Theory of Charge Transport in Mixed Conductors: **Description of Interfacial Contributions Compatible with** the Gibbs Thermodynamics Mikhail A. Vorotyntsev LSEO-UMR 5188 CNRS, Université de Bourgogne, Dijon, France

Content

- Introduction: mixed transport.
- Randles impedance. Interfacial capacitance. Formulation of the problem.
- Thermodynamics of charged interfaces. Conditions at interfaces for transport.
- Analytical expressions for impedance. Graphical illustrations.
- New systems: "mixed interfacial exchange".
- Conclusions.

medium 1

film : 2 mobile species plus fixed charges

medium 2

Film (f):

- conducting or redox polymers,
- electron-ion conducting oxides/hydrids/sulfides,
- Li⁺ & Mg⁺⁺ intercalation layers,
- solid electrolytes,
- thin layers of a binary solution.

Species :

- electronic and ionic (e, i) plus fixed charge,
- cations and anions.

Media 1 et 2 :

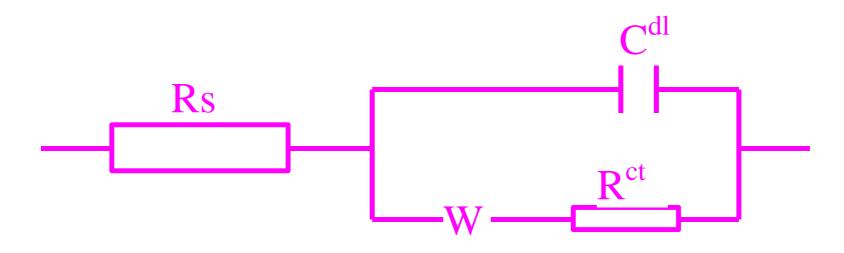
- electronic conductor (m),
- ionic conductor (s).

Tree types of systems :

- **m/f/m'** : between two electronic conductors,
- s'/f/s : "membrane geometry",
- **m/f/s** : "modified electrode"

Electrochemical Impedance Spectroscopy

- transport properties,
- interfacial characteristics


Based on :

- analytical analysis,
- equivalent circuit.

To be included :

- bulk film transport,
- charge transfer across the interfaces ("faradaic"),
- charge of interfaces (charge of "double layers")

Randles Impedance : metal / solution Supporting electrolyte + Redox species

General hypothesis:

- consider the process without interfacial charge,

- add "double layer capacitance" C^{dl} parallel to the "faradaic branch".

System containing only <u>two</u> mobile species:

- no supporting electrolyte,

- the <u>same</u> species participate at each interface
 - in the "**faradaic" process**

(redox reaction or ion exchange)

as well as

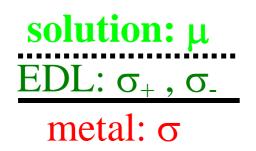
- in the **interfacial charge**

these two processes are coupled to the same transport process (Warburg element).

Another complication :

 $\begin{array}{c|c} \mbox{metal} & EDL & \mbox{diffusion} & \mbox{bulk solution} \\ \mbox{σ} & \mbox{σ}_{+}\,, \mbox{σ}_{-} & \mbox{layer} & \mbox{$i_k = t_k$}\ i \end{array}$

Composition of the double layer (charges σ_+ , σ_-) is determined by **properties of the interface**.


Partial currents i_k in the bulk solution are determined by **transport numbers** t_k .

This discrepancy of the partial currents and the variation of charges σ_+ , σ_- must be compensated by the diffusion layer

its impedance (analogue of W) must be a **function of t**_k as well as **of parameters determining** σ_+ and σ_-

Conclusion : **capacitance** C^{dl} **is not sufficient** to characterize the charging of interfaces !

<u>Thermodynamics of interfaces – binary solution</u>: 2 independent variables, e.g. $\sigma \& \mu = \mu_+/z_+ - \mu_-/z_-$

$$\begin{split} dE_{+} &= (C^{dl})^{\text{-1}} \ d\sigma \text{ - } t_{\text{-}}^{\ dl} \ d(\mu/F) \\ d\sigma_{+} &= \text{-} t_{+}^{\ dl} \ d\sigma \text{ - } C_{\mu}^{\ dl} \ d(\mu/F) \\ d\sigma_{\text{-}} &= \text{-} t_{\text{-}}^{\ dl} \ d\sigma \text{ + } C_{\mu}^{\ dl} \ d(\mu/F) \end{split}$$

THREE independent interfacial parameters:

(1) **C^{dl}**, interfacial capacitance ("capacitance of the electrical double layer"),

(2) \mathbf{t}_{+}^{dl} et \mathbf{t}_{-}^{dl} , "interfacial numbers of species" : $\sigma_{+} + \sigma_{-} = -\sigma \implies t_{+}^{dl} + t_{-}^{dl} = 1$ The same coefficient t_{-}^{dl} for dE_{+} et for $d\sigma_{-}$,

(3) C_{μ}^{dl} , "asymmetry factor of the interfacial charge"

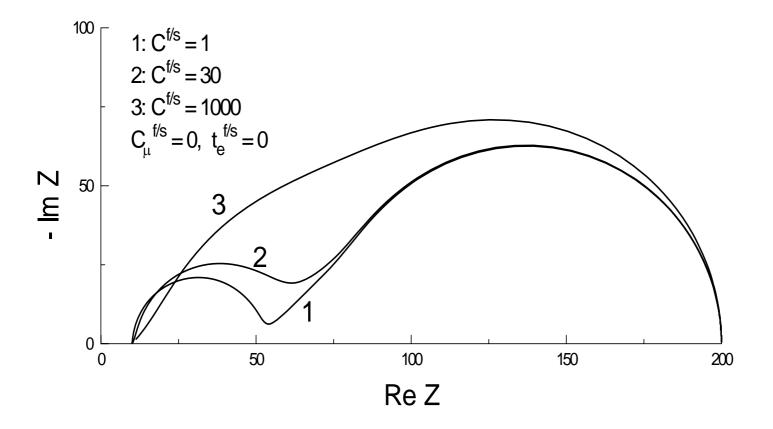
Electrolyte without specific adsorption : theory of Gouy-Chapman-Grahame

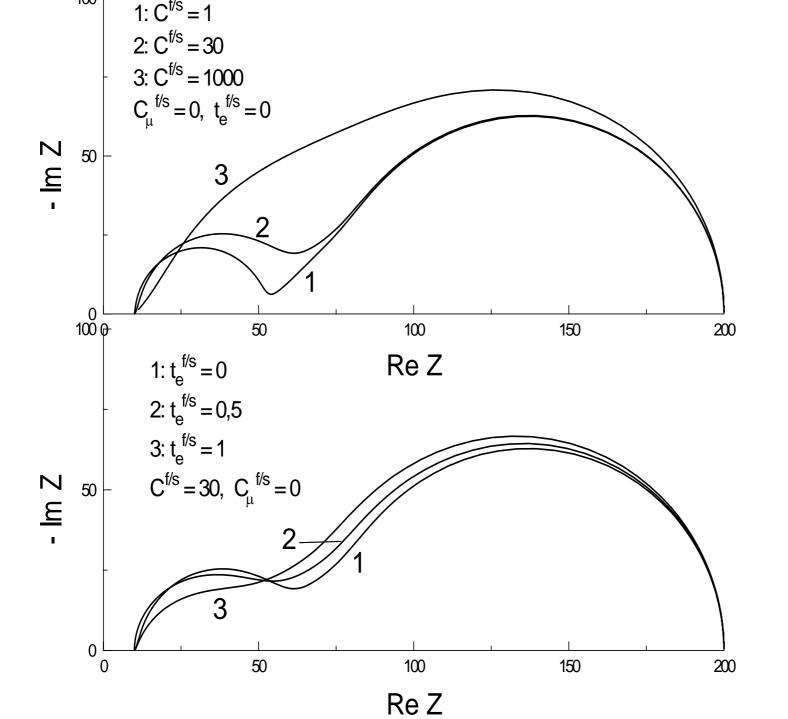
- these parameters are functions of σ and μ ,
- generally, $C_{\mu}^{dl} \sim C^{dl}$; $0 \le t_{+}^{dl}$, $t_{-}^{dl} \le 1$ **Specific adsorption**: $t_{k}^{dl} < 0$ or $t_{k}^{dl} > 1$ $i_{k}(0,t) = i_{k}^{dl} + i_{k}^{ct}$
- $i_k^{dl} = d\sigma_k / dt$
- $i_k^{ct} = [\mu_k^{ext} \mu_k(0,t)] / z_k F R_k^{ct} \equiv (E_k E_k^{o}) / R_k^{ct}$

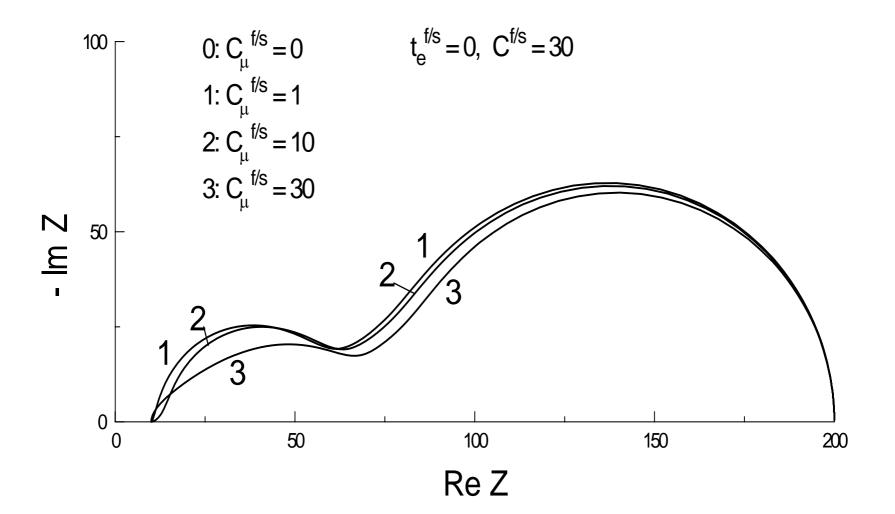
Transport equations + conditions at interfaces

Their combined solution gives <u>analytical expressions</u> of impedance $Z(\omega)$ for 3 geometries of the system : **m/f/m'** (different metals), **m/f/s**, **s'/f/s**.

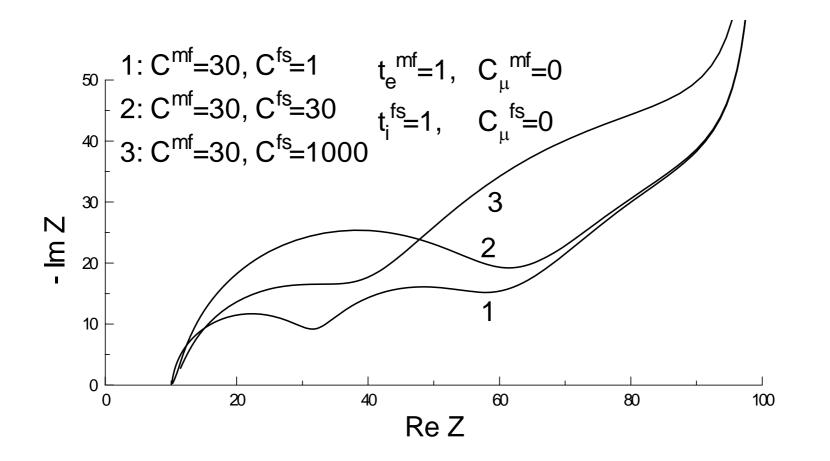
m/f/m : film between two identical metals $Z^{m/f/m} = R_f + 2 Z^{m/f} + 4 W_f (\delta t_i)^2 [\operatorname{coth} v + F^{m/t}]^{-1}$ $Z^{m/f} = (1 / R_e^{m/f} + i\omega C^{m/f})^{-1}$ $W_f = \Delta R_f v^{-1}$; $v = (j\omega L^2 / 4D)^{1/2}$ $\delta t_i = t_i - t_i^{m/f} (1 - g^{m/f}); g^{m/f} = (1 + i\omega R_e^{m/f} C^{m/f})^{-1}$ $F^{m/f} = 2 W_f j\omega [(t_i^{m/f})^2 g^{m/f} C^{m/f} - C_m^{m/f}]$

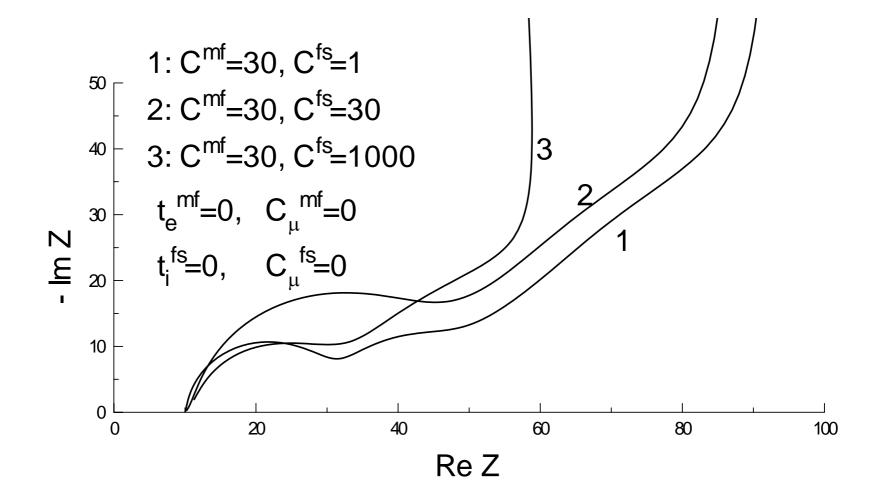

m/f/s : film between a metal and a solution

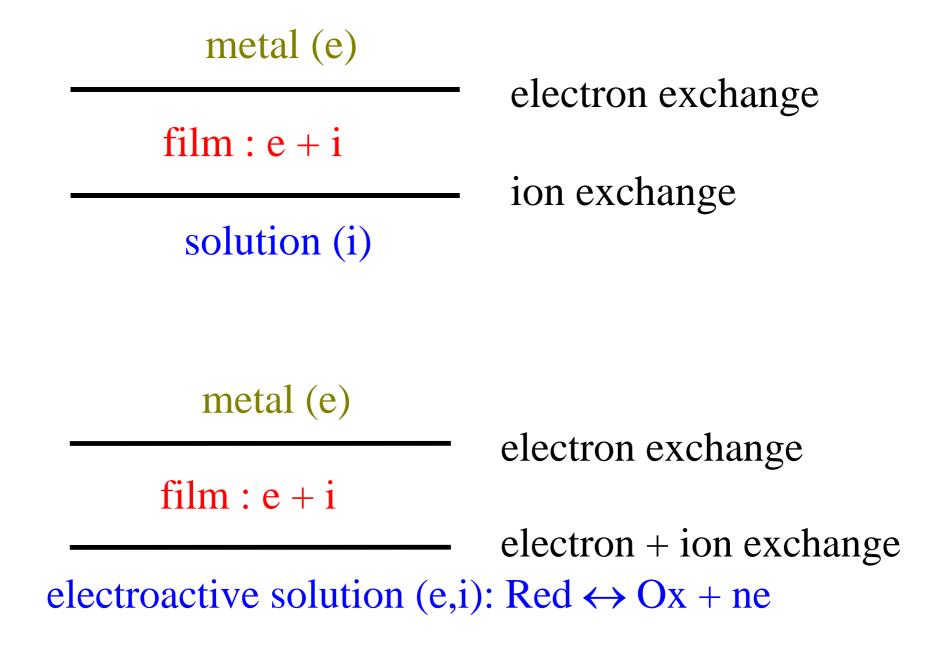

$Z^{m/f/s} = R_s + R_f + Z^{m/f} + Z^{f/s} + 2 W_f Z_a / Z_b$


$$\begin{split} &Z_a = (\ \delta t_i \)^2 \ (\ \coth 2\nu + F^{f/s} \) + 2 \ \delta t_i \ \delta t_e \ (\ \sinh 2\nu \)^{-1} \\ &+ (\ \delta t_e \)^2 \ (\ \coth 2\nu + F^{m/f} \) \ ; \\ &Z_b = 1 + (\ F^{m/f} + F^{f/s} \) \ \coth 2\nu + F^{m/f} \ F^{f/s} \end{split}$$

s/f/s : particular case, $t_e^{f/s} = 0$, $C_{\mu}^{f/s} = 0$ $Z^{s/f/s} = R_f + 2 Z^{f/s} + 4 W_f t_e^2 \tanh v$ $Z^{f/s} = (1 / R_i^{f/s} + j\omega C^{f/s})^{-1}$ $W_f = \Delta R_f v^{-1}$; $v = (j\omega L^2 / 4D)^{1/2}$


Symmetrical membrane geometry: film between two identical solutions, s/f/s





Modified Electrode Geometry: film between a metal and a solution, m/f/s

New geometries: m/f/es, es'/f/es, s/f/es

Similar treatment of boundary conditions for transport

Analytical solutions for all new geometries

New experimental possibilities: one can obtain impedance data for numerous systems having the same values of the bulk film and interfacial parameters

CONCLUSIONS

- there is no simple way to insert the contribution of the interfacial charge in the final expression for complex impedance.

- contrary to expectations, interfacial capacitance C^{dl} is not sufficient to characterize this contribution : impedance also depends on interfacial numbers t_{\pm}^{dl} as well as parameter C_{μ}^{dl} . thin film with a mixed conductivity : one can obtain analytical expressions Z(ω) in the cases :
1. between two metals (identical or different),
2. between two solutions ("membrane geometry"),
3. between a metal and a solution ("modified electrode").

- if the charging of the double layer is realized completely by the "faradaic" species, the effect of the interfacial charge is very simple : capacitance C^{dl} in parallel to $R_e^{m/f}$ or $R_i^{f/s}$.

- <u>general case</u> : impedance plots are markedly deformed with respect to this simple case.

Application of simplified formulae can lead to serious errors in the value of capacitance C^{dl} found from the treatment of experimental data.

- new prospects to extract the bulk-film and interfacial parameters of the system are provided by "non-traditional" arrangements, films in contact with "electroactive solutions".

Analytical formulae for complex impedance are now available for all possible 1D geometries: m'/f/m, s'f/s, m/f/s, m/f/es, es'/f/es, s/f/es