

Voronezh State University: Main Building

Oxide nanofilms on silver, copper and their alloys with gold: the kinetics of anodic formation and semiconductor properties

Sergei Ganzha

Voronezh State University, Department of Physical Chemistry, Universitetskaya pl. 1, 394006 Voronezh, Russia e-mail: <u>serganzha@gmail.com</u>

The motivation

The oxide formation strongly depends on the state of the metal/solution interface which is determined by the crystalline structure and chemical composition of the electrode as well as the electrode potential and the solution composition. The role of Ag crystal face in OH⁻ adsorption and initial stages of Ag₂O growth was revealed [1, 2]. The oxide formation and some structural properties of the oxides on single crystals (111) and (001) of copper were discussed [3]. The role of chemical irregularity of the electrode surface, modeled by the alloying, remains unexamined. Gold is considered the most suitable metal since I) Ag-Au as well as Cu-Au system is a continuous series of solid solutions and II) gold is thermodynamically stable at the potentials of silver and copper oxide formation.

The aim is to reveal the influence of the kinetic features of silver and copper oxide formation, caused by the crystal face of the electrode and its alloying with gold, and some semiconductor properties of the anodic oxide nanofilms.

^[1] Droog JMM, J. Electroanal. Chem. 115 (1980) 225

^[2] Doubova LM, Daolio S, Pagura C, De Battisti A, Trasatti S, Russ. J. Electrochem. 38 (2002) 20 [3] Kunze J, Maurice V, Klein LH; Strehblow H-H, Marcus P, Cor. Sci. 46 (2004) 245

Experimental

The objects

Ag _{poly} Cu _{poly}	•
$Ag_{100}, Ag_{110}, Ag_{111}$	•
Ag-Au ($X_{Au} = 1; 4; 15 \text{ at.}\%$)	•
Cu-Au ($X_{Au} = 4$; 15 at.%)	•

Deoxygenated 0.1 M KOH

The parameters of light-emitting diodes (LED)

	Parameters					
LED	Wave length λ, nm	Standard angle of divergence, ⁰	Specific light intensity, mWatt cm ⁻²			
LDUV53393	385	18	1.25			
LDUV3333	400	30	3			
LSBI3333	430	15	1.5			
NSPB300A	470	15	3			
NSPE590S	505	10	3			
NSPG500S	525	15	2			
HLMP-EL08-VY000	592	6	2			
HLMP-ED16- UX000	630	15	3.75			

The methods

Linear voltammetry and chronoammetry (IPC-Compact)

Photocurrent and photopotential spectroscopy

(original equipment with a sensibility of 10 nA and $2 \div 3 \mu V$)

➢ SEM (JEOL JSM-6380LV)

SEM- images of Ag_2O (L = 120 nm) on Ag, Ag4Au and Ag15Au

The current efficiency $\psi I \%$ of Ag₂O formation (nominator)

5

and the film thickness L / nm (denominator)

		E = ().56 V				
q / mC cm ⁻²	Ag _{poly}	Ag ₁₀₀	Ag ₁₁₀	Ag ₁₁₁	Ag1Au <i>E</i> =0.57 ∨	Ag4Au <i>E</i> =0.60 V	Ag15Au <i>E</i> =0.77 ∨
2 🖡	<u>71</u>	<u>50</u>	<u>47</u>	<u>60</u>	<u>33</u>	<u>45</u>	<u>40</u>
	2.4	1.7	1.6	2.0	1.1	1.5	1.3
3	7 <u>3</u>	<u>58</u>	<u>56</u>	70	<u>41</u>	<u>64</u>	<u>47</u>
	3.7	2.9	2.8	3.5	2.1	3.2	2.4
4	<u>79</u>	<u>76</u>	<u>63</u>	<u>76</u>	<u>60</u>	<u>65</u>	<u>46</u>
	5.3	5.1	4.2	5.1	4.0	4.4	3.1
5	<u>83</u>	<u>89</u>	<u>69</u>	<u>82</u>	<u>65</u>	<u>66</u>	<u>58</u>
	6.7	7.5	5.8	6.9	5.5	5.6	4.9
7	<u>85</u>	<u>90</u>	<u>77</u>	<u>83</u>	<u>72</u>	<u>70</u>	<u>64</u>
	10.0	10.6	9.1	9.8	8.5	8.2	7.5

Photocurrent and photopotential – thin films (L < W)

$$i_{ph} = i - i_{dark} = e \left[j_n(x) \Big|_{x=0} - j_p(x) \Big|_{x=0} \right]$$

 E_{ph} is calculated under condition of $i_{ph}=0$

$$\begin{split} \dot{i}_{ph} &= e\eta f \Phi_0 \left(1 - R \, \mathop{}^{out}_{ref} \right) \left(1 - e^{-2\alpha L} \right) = i_{ph}^{max} \left(1 - e^{-2\alpha L} \right) \approx 2\alpha i_{ph}^{max} L \\ E_{ph} &= -\frac{2kT}{e} \cdot \frac{\eta f \Phi_0 \left(1 - R \, \mathop{}^{out}_{ref} \right) \alpha L^2}{N_D D_n} e^{\frac{e(E - E_{fb})}{kT}} e^{\frac{1}{kT}} \\ \end{split}$$
Assumptions:
$$\begin{aligned} R \, \mathop{}^{inn}_{ref} &\approx 1 \\ L/\sqrt{2}L_D < 1 \end{aligned}$$

 η – quantum efficiency

f - coefficient of holes assimilation at the outer interface in electrochemical reaction

 Φ_0 – light intensity

R $_{ref}^{out}$ - coefficient of reflection from the outer interface

 α - coefficient of light absorption

 N_D – concentration of donor defects

$$D_n$$
 – coefficient of electron diffusion

E_{fb} – flatband potential

Photocurrent measurements in chronoammetry of Ag

Chronoammogram of Ag_{poly} at E=0.56 V and photocurrent

The growth of photocurrent with film thickness

Structural and optical parameters of Ag₂O at different potentials of film-

formation on polycrystalline Ag (λ =470 nm; Φ_0 =3.56·10¹⁵ photon cm⁻² s⁻¹)

E / V	0.52	0.53	0.54	0.55	0.56
i_{ph}^{max} / $\mu A \text{ cm}^{-2}$	4.4	4.2	4.3	4.0	4.4
$\eta f(1 - R_{ref}^{out}) \cdot 10^4$	77	73	75	70	77
$\alpha \cdot 10^{-5}$ / cm ⁻¹	0.90	0.90	1.08	1.10	2.30
α^{-1} / nm	111	111	93	91	44
W / nm	256	256	213	209	100
$N_{\rm D} \cdot 10^{-15} / {\rm cm}^{-3}$	2.83	2.98	4.51	4.90	22.40
L _D / nm	74.3	72.5	58.9	56.5	26.4
αL _D	0.67	0.65	0.63	0.62	0.61

W (Ag₂O on Ag_{hkl}) >> W (Ag₂O on Ag_{polv})

 $N_D (Ag_2O \text{ on } Ag_{hkl}) << N_D (Ag_2O \text{ on } Ag_{poly})$

Hence, more stoichiometric oxide is formed on silver single crystals.

Photocurrent in Ag₂O on Ag-Au alloys

Photopotential measurements after switching off the polarization

The scheme of photopotential registration

L – the film thickness W – space charge region $L_{\rm D}$ – Debye's length Chronopotentiogram of Ag_{poly} in 0.1 M KOH $q = 7 \text{ mC cm}^{-2}$, $\lambda = 470 \text{ nm}$, $\Phi_0 = 3.56 \cdot 10^{15} \text{ photon cm}^{-2} \text{ s}^{-1}$

Photopotential – time dependence (after the polarization switching off)-

Photocurrent spectroscopy

The estimation of band gap of Ag₂O for direct transitions

The parameters of Ag(I) oxide

formed at *E* = 0.56 V on different substrates

Para	ameter	Electrode system						
		Ag ₂ O Ag _{poly}	Ag ₂ O Ag _{hkl}	Ag ₂ O Ag-Au				
α /	cm ⁻¹	2.3	0.7÷1.4	0.001÷0.1				
W	/ nm	100	164÷330	767÷2300				
L _D	/ nm	26	43÷87	194÷570				
αL _D		0.61	0.60÷0.61	0.57÷0.58				
$\eta f(1-R_{ref}^{out}) \cdot 10^4$		77	75÷79	70÷72				
<i>N_D</i> ·10 ¹⁵ / cm⁻ ³		22.4	2.1÷8.3	0.05÷0.4				
€ direct / eV	on İ _{ph} data	2.32	2.23	2.19				
on $m{E}_{ m ph}$ data		2.09	2.09	_				

Electrochemical investigation on Cu and Cu-Au in 0.1 KOH

The current efficiency ψ / % of the oxide formation on Cu and Cu-Au

The electrode	Cu	Cu4Au	Cu15Au
The range II (Cu ₂ O formation)	~100	~100	~100
The range III (CuO formation)	62	85	57

Photocurrent measurements on copper

Photocurrent measurements on Cu-Au

Photocurrent spectroscopy

$$(i_{ph}hv)^{2/m} = C_1 L^{2/m} (hv - \mathcal{E}_{bg})$$

$$C_1 \text{ is a constants, the parameter } m = 4 \text{ for indirect optical transition}$$

$$4 \int_{2}^{(i_{ph}\cdot hv)^{1/2}/(\mu A \cdot eV)^{1/2}} \int_{1.5}^{(\mu A \cdot eV)^{1/2}} \int_{2.5}^{(\mu A \cdot eV)^{1/2}/(\mu A \cdot eV)^{1/2}} \int_{1.5}^{(i_{ph}\cdot hv)^{1/2}/(\mu A \cdot eV)^{1/2}} \int_{1.5}^{(i_{ph}\cdot hv)^{1/2}} \int_{1.5}^{(i_{ph}\cdot hv)^{1/2}} \int_{1.5}^{(i_{ph}\cdot hv)^{1/2}} \int_{1.5}^{(i_{ph}\cdot hv)^{1/2}} \int_{1.5}^{(i_{ph}\cdot hv)^{1/2}} \int_{1.5}^{(i_{ph}\cdot hv)^{1/2}} \int_{1.5}^{($$

Conclusions

> The predominant route of Ag(I) oxides anodic formation is not the precipitation from the near-electrode layer, but mainly the direct electrochemical reaction. The thickness of these oxide films does not exceed the space charge region.

>On Ag and Ag-Au alloys n-type Ag(I) oxide with a prevalence of donor defects is formed. The transition from polycrystalline Ag to single crystals as well as the alloying of silver with gold up to 4 at.% results in a decrease of the band gap of Ag₂O and an increase of the stoichiometry.

>On Cu and Cu-Au alloys the p-type Cu(I) and Cu(II) oxides with a prevalence of acceptor defects are formed. Cu(I) oxide has the band gap of 2.2 eV with the prevalence of indirect optical transitions. At the initial stage of anodic oxidation the oxide layer with n-type conductivity appears. During the thickening the n-type oxide phase transforms into the p-type Cu(I) oxide.

≻Copper is subject to corrosion even in a thoroughly deoxygenated solution with Cu_2O formation. The preliminary anodic formation of a thin Cu(I) oxide as well as the alloying of copper with gold (up to 4 and 15 at.%) hampers this process.

Acknowledgements

We are grateful for financial supporting to Russian Foundation for Basic Research (09-03-00554a)

SEM

Photocurrent spectroscopy

in Ag_2O on Ag_{poly} (E=0.56 V)

Photopotential spectroscopy

$$\left(\mathbf{E}_{\mathrm{ph}}\mathbf{h}\mathbf{v}\right)^{2/m} = \mathbf{C}_{2}\mathbf{L}^{4/m}\left(\mathbf{h}\mathbf{v} - \boldsymbol{\mathcal{E}}_{\mathrm{bg}}\right)$$

The estimation of band gap in Ag₂O for direct transitions

 $\begin{cases} \alpha(Ag_2O/Ag_{110}) < \alpha(Ag_2O/Ag_{100}) < \alpha(Ag_2O/Ag_{111}) \\ N_D(Ag_2O/Ag_{110}) < N_D(Ag_2O/Ag_{100}) < N_D(Ag_2O/Ag_{111}) \\ W(Ag_2O/Ag_{110}) > W(Ag_2O/Ag_{100}) > W(Ag_2O/Ag_{111}) \\ L_D(Ag_2O/Ag_{110}) > L_D(Ag_2O/Ag_{100}) > L_D(Ag_2O/Ag_{111}) \\ [110] < [100] < [111] \end{cases}$

E=0.52 V

E=0.56 V

 $\left\{ \begin{array}{l} \alpha(Ag_2O/Ag_{100}) < \alpha(Ag_2O/Ag_{111}) < \alpha(Ag_2O/Ag_{110}) \\ N_D(Ag_2O/Ag_{100}) < N_D(Ag_2O/Ag_{111}) < N_D(Ag_2O/Ag_{110}) \\ W(Ag_2O/Ag_{100}) > W(Ag_2O/Ag_{111}) > W(Ag_2O/Ag_{110}) \\ L_D(Ag_2O/Ag_{100}) > L_D(Ag_2O/Ag_{111}) > L_D(Ag_2O/Ag_{110}), \\ \sigma_n(Ag_2O|Ag_{100}) > \sigma_n(Ag_2O|Ag_{111}) > \sigma_n(Ag_2O|Ag_{110}), \\ \mu_n(Ag_2O|Ag_{100}) < \mu_n(Ag_2O|Ag_{111}) < \mu_n(Ag_2O|Ag_{110}). \end{array} \right.$

Coulometry

The anodic charge of copper oxidation, the cathodic charge of oxide film reduction and the difference charge of copper corrosion ($\tau = 10$ minutes)

E, V	-0.7	-0.5	-0.3	-0.2	-0.17	-0.15	-0.12	-0.05	0	0.1
$Q_a = Q_{ox}, mC$	0	0	0.4	1	1.8	1.7	2.6	3.4	5.4	67.8
$Q_k = Q_{red}, mC$	9.3	9.0	9.6	6.6	3.3	5.4	8.1	11	9.8	36.6
$Q_{k} - Q_{a} = Q_{cor},$ mC	9.3	9.0	9.2	5.6	1.5	3.7	5.5	7.6	4.4	-

Photocurrent and photopotential – the theory for bulk n-type semiconductor (L > W)

$$\frac{d}{dx}\left[\frac{dp(x)}{dx} + p(x)\frac{d\psi(x)}{dx}\right] = -\alpha a_1 e^{-\alpha x} \quad (0 \le x \le W)$$

$$\frac{d}{dx}\left[\frac{dn(x)}{dx} + n(x)\frac{d\psi(x)}{dx}\right] = -\alpha a_2 e^{-\alpha x} \quad (0 \le x \le W)$$

$$\frac{d^2\psi(x)}{dx^2} = -\frac{e^2}{\varepsilon\varepsilon_0 kT} \left[p_0 e^{-\psi(x)} + N_D - n_0 e^{\psi(x)} - N_A \right]$$

$$(0 \le x \le W)$$

$$\psi(x) = \frac{e\phi(x)}{kT} = -\frac{1}{2L_{D}^{2}} \begin{cases} (x - W)^{2} & L > W \\ (x - L)^{2} + (W^{2} - L^{2}) & L < W \end{cases}$$

$$\frac{d^{2}p(x)}{dx^{2}} = -\alpha a_{1}e^{-\alpha x} + \frac{p(x) - p_{0}}{L_{p}^{2}} \qquad (W \le x \le L)$$

Assumptions:

•
$$N_D^+ \approx N_D$$

- The volume of semiconductor out of space charge region is quasi-neutral
- Distribution of n and p in space charge region in equilibrium state satisfies Boltzmann low
- Recombination during the radiation is negligibly small
 - W space charge region L – film thickness L_D – Debye's length L_p – diffusion length

Photocurrent and photopotential – thin films (L < W)

with a high level of light absorption ($\alpha L_D \ge 1$)

$$\begin{split} i_{ph} &= e\eta f \Phi_{0} \left(1 - R_{ref}^{out} \right) \left(1 + R_{ref}^{inn} e^{-\alpha L} \right) \left(1 - e^{-\alpha L} \right) + \frac{e N_{D} D_{n} \left(1 - e^{-\frac{eE_{ph}}{kT}} \right)}{\sqrt{2} L_{D} \mathcal{F} \left(L / \sqrt{2} L_{D} \right)} e^{-\frac{e(E - E_{th})}{kT}} \\ E_{ph} &= -\frac{kT}{e} ln \Bigg[1 + \frac{\eta f \Phi_{0} \left(1 - R_{ref}^{out} \right) \left(1 - R_{ref}^{inn} e^{-\alpha L} \right) \left(1 - e^{-\alpha L} \right)}{N_{D} D_{n}} L_{D} \sqrt{2} \mathcal{F} \left(\frac{L}{\sqrt{2} L_{D}} \right) e^{\frac{e(E - E_{th})}{kT}} \Bigg] \end{split}$$

 η – quantum efficiency; Φ_0 – light intensity

f – coefficient of holes assimilation in electrochemical reactions at the outer interface N_D – concentration of donor defects; D_n – coefficient of electron diffusion α – coefficient of light absorption; E_{fb} – flatband potential

- R $_{ref}^{out}$ and R $_{ref}^{inn}$ coefficients of reflection from the outer and inner interfaces
 - $\mathscr{F}(u) \text{integral of Doson}$ $L < L_D$ hence $(L / \sqrt{2} L_D) < 1$ $\mathscr{F}(u) \approx u \text{ at } u < 1$ and $\mathscr{F}(L / \sqrt{2} L_D) \approx L / \sqrt{2} L_D$

The dependences of photopotential on film thickness and light intensity

The photopotential in Ag₂O formed on Ag_{poly} and Ag_{hkl} at E = 0.56 V

The scheme of potentiostatic measurements on Cu and Cu-Au-

E = -0.7; -0.5; -0.3; -0.2; -0.15; -0.12; -0.1; -0.05; 0.0; 0.1; 0.2; 0.4 V (s.h.e.) $\tau = 10, 15, 20, 25, 30 \text{ minutes}$

The photopotential on copper surface in deoxygenated 0.1M KOH; $\lambda = 400 \text{ nm}, \Phi_0 = 7.12 \cdot 10^{15} \text{ photon/cm}^2 \text{ s}$

Photopotential measurements on Cu and Cu-Au after the polarization in the range II (λ = 400 nm)

The dependence of the initial photopotential (a) and polarization current (b) on the potential of Cu-electrode

The clear-cut correlation between the $E_{ph}(0) - t$ dependence and the voltammogram shows a close interrelation between the kinetics of the oxide formation and the oxide structure predetermining the value of the photopotential.

Flat-band potential of Cu₂O and CuO

XPS-study of Ag4Au after Ag₂O formation in 0.1 M KOH

We are grateful to professor Leonid Kazanskiy for help in this measurements

Photopotential measurements on Cu and Cu-Au after the polarization in the ranges I and II (λ = 400 nm)

