Оксиды молибдена и вольфрама:

- Перезаряжаемые оксовольфраматные пленки
 - II Электрохромные свойства
 - III Анализ состава (диплом А.Хохлова)

Катодная электрокристаллизация оксидов молибдена

Перезаряжаемые оксовольфраматные пленки II – Электрохромные свойства

Время отклика и стабильность

cycle

 Потеря эффективности перезаряжения на 20 – 80% за 200 циклов

РФА: нет значимых изменений после циклирования

V.K.Laurinavichute, S.Yu.Vassiliev, L.M.Plyasova, I.Yu.Molina, A.A.Khokhlov, L.V.Pugolovkin, M.I.Borzenko, G.A.Tsirlina <u>Cathodic electrocrystallization and electrochromic properties of doped</u> <u>rechargeable oxotungstates</u> (Electrochimica Acta 54 (2009) 5439–5448);

V.K. Laurinavichute, S.Yu.Vassiliev, L.M.Plyasova, I.Yu.Molina, M.I.Borzenko, G.A.Tsirlina. // WEEM 2009

Электрохромные свойства в 2 М H2SO4 (350 – 1100 нм)

Три волны:

~400 нм 620 -700 нм 1000-1300 нм

Пленка W-V

In-situ оптика (2 M H2SO4)

- 620 -700 нм W5=0(терм)/W6 ? или V4/W5 ?
- 1000 нм перенос заряда W5/W6 либо V4/W6

Эффективность окрашивания (1100 нм) и время отклика

При зарядах < 2–3 мКл/см²):

- CE (W) = 91 см²/Кл
- CE (V-W) = 200 см²/Кл
- CE (Mo-W) = 300 см²/Кл
- Более высокая эффективность окрашивания при 1100 нм
- Более высокая эффективность окрашивания у допированных пленок

Времена оклика при 700 нм в 0,5 М и в 1.0 М H2SO4 близки Время отклика при 1100 нм - меньше

Электрохромизм. Эффекты допировки.

•Перенос заряда

 $W^{5+}(A) + W^{6+}(B) + h_{V} \rightarrow W^{6+}(A) + W^{5+}(B)$

Влияние допирования: •появление/сдвиг полосы поглощения в УФ область: (Mo⁵⁺ + W⁶⁺ + h_V→ Mo⁶⁺ + W⁵⁺) • увеличение искажений структуры – стабилизация поляронов

Планы

 Спектры в более широком диапазоне волн: анализ смещения волны на ~1100 нм оценка энергетических параметров (энергия переноса, ширина запрещенной зоны) сопоставление с количественным составом пленок
Независимая оценка толщин пленок (рефлектометрия совместно с ин-том Кристаллографии, Э. Левин)
Структура пленок разных толщин (рентген, Э. Левин)

III - Анализ состава пленок методом ICP MS (диплом А.Хохлова)

1. Калибровка по стандартным растворам:

Линейность в в области концентраций 1÷100 (400 для W) × 10⁻⁸ М (R = 0,9996 ÷ 0,9999)

- 2. Оценка «мешающего действия» W на Mo и V:
 - занижение Mo (2%) и V (4%);
 - завышение W (5%)
- 3. Анализ «свежих» пленок (Pt)

	W*10 ⁻⁷ моль	<mark>Мо/V</mark> *10 ⁻⁷ моль
Пленки W 2 / 5 / 10 мКл	2,26 / 5,95 / 14,15	
Пленки WMo 2 / 5 / 10 мКл	2,56 / 12,15 / 10,1	0,08 / 0,14 / 0,31
Пленки WV 2 / 5 / 10 / 30 мКл	3,36 / 6,97 / 13,4 / 41,2	< 0,2 мол. %

Допирование: ~ 3 мол. % молибдена (1% для 5 мКл ?) 0÷0,2 мол. % ванадия – сравнимо с ошибками Перезаряжение ~ 0.1 е на атом W 4. Анализ «состаренных» пленок (Pt): мольная доля Мо и V не изменяется

5. Анализ пленок (FTO):

	W*10 ⁻⁷ моль	<mark>Mo/V</mark> *10 ⁻⁷ моль
Пленка W	9,75	
Пленка WMo	8,32	0,58
Пленка WV	5,65	0,01

Допирование: ~ 7 мол. % молибдена

0,1÷0,2 мол. % ванадия – сравнимо с ошибками Перезаряжение ~ 0.3-0.8 е на атом W

Планируется:

 •Сопосталение результатов анализа с предварительными э/х данными → оценка степени презаряжения, оценка толщин
•Электрохимические измерения → природа стадий перезаряжения

Катодная электрокристаллизация оксидов молибдена

Стартовая задача: получение КМо₄О₆ для литиевой интеркаляции

Методические подробности:

3х электродная ячейка, все электроды - платиновые площадь рабочего электрода – 0,1 / 2-4 см2 алундовый тигель (Al, Si, Ti) масса расплава: 50-75 г температура: 550 – 960 С расплав: КМоО4 (NaMoO4)/MoO3 25/1 – 1/1

- металлические связи Мо-Мо
- анизотропия свойств

Зависимость от скорости развертки

Химическое превращение (окисление) Мо: целевой продукт или еще один интерметаллид?

Возможное окисление компонентами расплава: Mo + 2MoO₃ = 3MoO₂ (ΔG^{960} = -212,45 кДж) = KMo₄O₆ ???

КМо₄О₆ – продукт восстановления некоего комплекса или окисления металлического Мо?

Состав осадков в зависимости от условий осаждения (совместно с А. Алексеевой)

Состав расплава К ₂ MoO ₄ /MoO ₃	Плотность тока, А/см2	T, oC	Другие условия осаждения	осадок
25/1	0,53	960*	5ч,	Мо
	0,18		19.5 ч,	KMo ₄ O ₆ + Mo (70 %)
	0.1		5ч	КМо4О6 + Мо (~вес.40%)
	0,08		16,4 ч	$KMo_4O_6 + Mo (< 5 \text{ Bec. \%})$
16 : 1	0.04	960*	4 часа	KMo ₄ O ₆
9:1	0.045	960*	4 часа	KM040 ⁶
6/1	0,06	960*	15.5 ч,	$\frac{\text{KMo}_{4}\text{O}_{6} + \text{K}_{3}\text{Mo}_{14}\text{O}_{22}}{(5 \text{ Bec. \%})}$
	0,06		4 ч, тот же расплав	KM040 ⁶
4/1	0,06	960	13 ч 45 мин	$MoO_{2} + KMo_{4}O_{6} (33\%)$
	0,25		1 ч 30 мин	MoO ₂₊ KMo ₄ O ₆ (10 %)
3/1	0,07	795 C	2 ч	MoO ₂
	0,24	960 C	3.4 ч	MoO ₂
	0,06		4,6 ч	MoO ₂
1/1	0,05	550*	2ч	MoO ₂
	0,06	960	18,4 ч	MoO ₂ + ?????

* - почернение платины (образование интерметаллида?)

Осаждение в импульсном режиме: возможность варьирования

соотношения Мо/МоО₃

(совместно с Э. Левиным, А. Филатовым)

0 А/см2 (0 – 67%)

1) Осаждение металлического Мо

2) Окисление Mo (Mo+MoO₃ +K₂MoO₄-> KMo₄O₆ ?)

увеличение концентрации МоО₃ в приэлектродном слое

Скважность	Состав осадка по РФА	Размер основных частиц
Гальваностат (0)	KM04O ⁶	200-400х10-50 мкм
33%	КМо₄О₆ (примесь К ₃ Мо ₁₄ О ₂₂)	100-400х10-50 мкм
45%	69.5% KMo₄O₆ 15.3% K ₃ Mo ₁₄ O ₂₂ 15.2% MoO ₂	100х5-50 мкм
50%	12.4% KMo ₄ O ₆ 3.5% K ₃ Mo ₁₄ O ₂₂ 84.1% MoO₂	100-200х10-50 мкм
67%	МоО₂ Примесь Pt ₃ Mo (?)	50-150х5-30 мкм

Уменьшение доли катодного тока аналогично увеличению доли MoO₃!

Размеры: KMo₄O₆> MoO₂> K₃Mo₁₄O₂₂>Mo

 \Rightarrow Можно исключить последовательное окисление: Мо \rightarrow KMo₄O₆ \rightarrow K₃Mo₁₄O₂₂ \rightarrow MoO₂

Расплав К₂МоО₄/МоО₃ 1/1. Температура: 550 С

Интеркаляция лития (С. Васильев, Э. Левин при поддержке А. Гаврилова)

Предобработка: 3.5-3.7 В, 24 час, ~100 Кл/г

Планы

•Публикация результатов по процессам катодной электрокристаллизации совместно со структурными данными (А. Алексеева)

•Возможны эксперименты по интеркаляции в смеси мелких кристаллах KMo₄O₆ и K₃Mo₁₄O₂₂ •Дальнейшее осаждение образцов для израильских коллег, если потребуется.

Спасибо за внимание!