

Радиационно-химический синтез биметаллических наночастиц в матрицах интерполиэлектролитных комплексов

С.Б. Зезин, Д.А. Климов, Е. А. Зезина, В. И. Фельдман, С.С.Абрамчук С.Н. Чвалун, Я.В. Зубавичус

Восстановление ионов металлов в

полимерных матрицах

b

Ruiz P, Muñoz M, Macanás J, Turta C, Prodius D, Muraviev DN Dalton Trans (2010) 39:1751 Wang TC, Rubner MF, Cohen RE Chem Mater (2003) 15: 299

Lei Z, Wei X, Zhang L, Bi S Colloids Surfaces A: Physicochem. Eng. Aspects (2008) 317: 705–710

Schacher FH, Rudolph T, Drechsler M, Müller AHE Nanoscale (2011) 3:288

Antipov AA, Sukhorukov GB, Federik YA, Hartman J, Giersing M, Möhwald H Langmuir (2002) 18: 6687 Kidami S, Dai J, Li J, Bruening ML J Am Chem Soc (2004) 126: 2658

Dotzauer DM, Abusaloua A, Miachon S, Dalmon J-A, Bruening ML Appl Catal B Environ (2009) 91:180

Интерполиэлектролитные комплексы

ПАК-ПЭИ С

Роль матрицы ПАК-ПВТ

Au

Суспензии Си Полиакриловая кислота Поливинилимидазол 0.05 М ПАК 0.05 М ПВИМ 0.02 M Cu²⁺ pH=2.9

Биметаллические наночастицы - как они получаются?

Mon dessin ne représentait pas un chapeau. Il représentait un serpent boa qui digérait un éléphant

J'ai alors dessiné l'intérieur du serpent boa, afin que les grandes personnes puissent comprendre. Elles ont toujours besoin d'explications

ИНТЕРПОЛИЭЛЕКТРОЛИТНЫЕ КОМПЛЕКСЫ

		Сорбционные характеристики		
	NH NH NH	пленок ИПЭК		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} Cu^{2+} \\ \hline H^+ \end{array} \qquad \begin{array}{c} Cu^{2+} \\ \hline COO^{9} & \ominus OOC \\ \hline \end{array} \qquad \begin{array}{c} Cu^{2+} \\ \hline COO^{9} & \ominus OOC \\ \hline \end{array} \qquad \begin{array}{c} Cu^{2+} \\ \end{array} \end{array} $	Metal	Sorption, wt., %	
Время облучения	Время общинения	Cu (2+)	27	
15 мин	б0 мин	Co (2+)	20	
		Ni (2+)	20	
		Fe (2+)	6	
		Ag (+)	22	
100 nm	<u>100 nm</u>			

могут содержать относительно большие количества ионов металлов, концентрацию ионов легко варьировать в подобных полимерных системах

🖙 ограниченно набухают в воде, проницаемы для

низкомолекулярных соединений

Эстабилизируют металлические наночастицы

Пленки комплексов, набухшие в водно-спиртовой среде

Коэффициент набухания пленок – 40%, толщина пленок 0.1 – 0.3 мм

Облучение образцов при температуре 23°С в отсутствие кислорода воздуха

Рентгеновское облучение

H₂O W→ e^{-}_{aq} , 'OH, ⁺H₃O, H₂, 'H 'OH + CH₃CH₂OH → CH₃'CHOH + H₂O M e^{n+} + e^{-}_{aq} → M $e^{(n-1)+}$ → ... → M e^{0} M e^{n+} + R⁺ → M $e^{(n-1)+}$ + R⁺

$$\begin{split} \mathsf{Me}^0 + \mathsf{Me}^+ &\to \mathsf{Me}^{\mathsf{n+}}_{\mathsf{m}} \\ \mathsf{Me}(\mathsf{nnob})^0 + \mathsf{Me}(\mathsf{nob})^+ &\to \mathsf{Me}(\mathsf{nnob})^+ + \mathsf{Me}(\mathsf{nob})^0 \\ \mathsf{Me}(\mathsf{nnob})^0 + \mathsf{Me}(\mathsf{nob})^0 &\to \mathsf{Me}(\mathsf{nnob})\mathsf{Me}(\mathsf{nob}) \\ \mathsf{Me}(\mathsf{nnob})^{\mathsf{n+}}_{\mathsf{m}} + \mathsf{Me}(\mathsf{nnob})^+ &\to (\mathsf{Me}(\mathsf{nnob})_{\mathsf{m}}\mathsf{Me}(\mathsf{nob}))^{\mathsf{n+}} \end{split}$$

(1)

(2)

(3)

 $Me(nnob)^{0} + Me(nob)^{+} \rightarrow Me(nnob)^{+} + Me(nob)^{0}$ (1)

(2)

 $Me(nnob)^{n+} + Me(nnob)^{+} \rightarrow (Me(nnob)_{m}Me(nob))^{n+}$

Происходит постепенный рост размеров наноструктур меди

🖙 размер наночастиц золота не меняется

1 0/ Ar 50/ Cu			Cu	Au
1 /0AI 5/0CU		Доза облучения образца: 80 кГр		
		размер наночастиц,		17.78
٨	200 nm	НМ	-	1
		Доза облучения образца: 160 кГр		
Reflections		размер наночастиц,	17 165	13.12
particles of copper		НМ	17.165	7
		Доза облучения образца: 320 кГр		
and the second and the second se	480 кГр – 180 мин	размер наночастиц,	20 533	12.83
man will the way way way of an	Mr. 480 kGy	НМ	20.333	1
MANNA (MM Manna M	Доза облучения образца: 480 кГр			
	размер наночастиц,			
2 Tetra	НМ	38.159	12.311	

Формируются наночастицы типа ядро-оболочка. Как ядро и так оболочка имеют составной характер. Ядро включает, как наноструктуру металлического золота, так и нанострктуру сплава золота с малым содержанием меди. Оболочка наночастиц состоит из наноструктур меди и сплава меди и золота с малым содержанием золота.

🖙 дозой облучения

Эначальным содержанием ионов металлов

размеры наноструктур биметаллических частиц определяются

1) Vladimir I. Feldman, Alexey A. Zezin, Sergey S. Abramchuk, Elena A. Zezina. X-ray Induced Formation of Metal Nanoparticles from Interpolyelectrolyte Complexes with Copper and Silver Ions: the Radiation-Chemical Contrast // Journal of Physical Chemistry 2013 C, V.117, PP. 7286-7293

2) Ayşe Bakar, Olgun Guven, Alexey A. Zezin, Vladimir I. Feldman.Controlling the size and distribution of copper nanoparticles in double and triple polymer metal complexes by Xray irradiation // Radiation Physics and Chemistry Volume 94, January 2014, PP. 62–65

3) Dmitry V. Pergushov, Alexey A. Zezin, Alexander B. Zezin and Axel H.E. Muller. Advanced Functional Structures Based on Interpolyelectrolyte complexes// Adv Polym Sci, 2014 V.255: PP.173–226 DOI: 10.1007/12_2012_182, принято в печать