Третья часть марлезонского балета

Васильев Сергей Юрьевич (wasq@elch.chem.msu.ru)

http://www.elch.chem.msu.ru/rus/prgfnm.htm

Электрохимическая кинетика

В раствор 2М NaOH при температуре 368 К помещены два электрода: анод с геометрической площадью поверхности 10 см², загрузка платины 100 мкг/см², диаметр сферических частиц 9 нм, и катод с геометрической площадью поверхности 15 см², загрузка никеля 80 мкг/см², диаметр сферических частиц 10 нм. При каком напряжении функционирование системы в режиме электролизера (при отсутствии диффузионных ограничений) обеспечит выделение водорода со скоростью 2.5 л/час (при н.у.)? Омическими потерями пренебречь. Коэффициенты переноса для замедленных одноэлектронных стадий обеих реакций принять равными 0.5. Стандартные потенциалы систем O_2/H_2O и H⁺/H₂ при температуре 368 К принять равными 1.23 и 0 В соответственно.

электрод	электролит	водородная реакция, А/см ²	кислородная реакция, А/см ²
платина	1-3 M		4.10^{-8}
	NaOH		
никель	0.007-0.08	$7.7 \cdot 10^{-5}$	
	M NaOH		
никель	1-3 M	$3,5\cdot10^{-3}$	
	NaOH		

Токи обмена для водородной и кислородной реакций (при 298-370 К)

Нанесение покрытия NiFe₂O₄ осуществляли в две стадии. На первой стадии в течение 5 часов на поверхность электрода при оптимальном потенциале в отсутствии диффузионных ограничений осаждали металлические никель и железо, которые затем химически реагировали с образованием интерметаллида Fe₂Ni. На второй стадии проводили электрохимическое окисление полученного осадка. Предложить оптимальный потенциал осаждения интерметаллида и рассчитать заряд, необходимый для окисления покрытия до феррита. Раствор осаждения содержит 6.34 г/л FeCl₂, 12.97 г/л NiCl₂. Коэффициенты уравнения Тафеля (плотность тока в A/cm²) для процесса восстановления ионов никеля а = 0.87, b=0.091, для процесса восстановления ионов железа а = 0.72, b = 0.121. Ионионными взаимодействиями и энергией сплавообразования пренебречь.

Две одинаковых железных пластины площадью 5 см² подвергаются коррозии в 0.005 М водных растворах FeSO₄ при pH 5 и 6.66 и температуре 298 К в условиях водородной деполяризации. Объём растворов позволяет пренебречь изменением концентрации ионов железа в ходе коррозии. Диффузионные ограничения отсутствуют. Найти, насколько изменятся массы пластин после 13 суток коррозии и скорость коррозии образцов в мм/год. Токи обмена для систем Fe²⁺/Fe и H₃O⁺/H₂ равны 0.005 и 0.2 мА·см⁻² соответственно. Коэффициенты переноса для замедленных первых одноэлектронных стадий обеих реакций принять равными 0.5. Ион-ионными взаимодействиями пренебречь.

Конденсаторы. Электрохромные устройства. Электрохимические сенсоры

Васильев Сергей Юрьевич (wasq@elch.chem.msu.ru)

http://www.elch.chem.msu.ru/rus/prgfnm.htm

Аккумулятор или конденсатор...

Table I. Comparison of some important characteristics of state of the art electrochemical capacitors and lithium-ion batteries.

Characteristic	State of the Art Lithium Ion Battery	Electrochemical Capacitor
*Charge time	~3-5 minutes	~1 second
*Discharge Time	~3-5 minutes	~1 second
Cycle life	<5,000 @ 1C rate	>500,000
Specific Energy (Wh/kg)	70-100	5
Specific power (kW/kg)	**0.5 -1	5-10
Cycle efficiency (%)	<50% to >90%	<75 to >95%
Cost/Wh	\$1-2/Wh	\$10-20/Wh
Cost/kW	\$75-150/kW	\$25-50/kW

Материалы

Материалы

Ассиметричные подходы

Type B: Activated carbon/Metal oxide

Type A: Graphite/Activated carbon

Двойнослойный конденсатор

заряжение двойного слоя

Псевдоконденсатор

окислительно-восстановительные превращения

Нестехиометрические оксиды:

Углеродные материалы

Углеродные материалы

Journal of The Electrochemical Society, 155 10 A745-A753 2008

Пористость

«Наноструктурированный» углерод

CARBON 47 (2009) 306-312

NATURE NANOTECHNOLOGY | VOL 5 | SEPTEMBER 2010 | 651

Гидратированный диоксид рутения

Current Applied Physics 10 (2010) 99–103

Диоксид марганца

Композиционные материалы

Полипиррол + графен

 $RuO_2 + C$

Chem. Mater. 2010, 22, 5667-5671

Electrochimica Acta 54 (2009) 2239-2245

Системы для опреснения воды

Electrochimica Acta 55 (2010) 3845–3856

Электрохромные устройства idol reedinghome film

ectrowiel

des

Electrochromic Window Blinds - Magic Control -

By Citiglass Group

Электрохромные материалы

Неорганические: WO₃, Ni(OH)₂, Ir₂O₃*xH₂O, Nb₂O₅ и др.

Электронпроводящие полимеры:

Электрохромный переход: РЕДОТ

Chem. Commun., 2005, 5251–5259

Полианилин

Оптимизация спектральных характеристик: функциализация или композиции

Comonomer Solution Composition	Neutral Polymer λ _{max} (nm)	Neutral Electrochromic Response (Photograph)
100% BiEDOT	577	
90:10	559	No. Contraction
80:20	530	and the second
70:30	464	La contra da contra d Contra da contra da con
50:50	434	
30:70	431	
20:80	429	
10:90	420	
100% BEDOT-MMcCz	420	

Chem. Commun., 2005, 5251–5259 Displays 27 (2006) 2–18

Chem. Mater. 1998, 10, 2101-2108

Оптимизация спектральных характеристик: функциализация или композиции

Перезаряжаемые оксиды: V₂O₅

Li аккумулятор

 $V_2O_5 + 0.5Li^+ + 0.5e \Leftrightarrow Li_{0.5}V_2O_5$ $Li_{0.5}V_2O_5 + 0.5Li^+ + 0.5e \Leftrightarrow LiV_2O_5$

 $LiV_2O_5 + 1Li^+ + 1e \Leftrightarrow Li_2V_2O_5$

J. Mater. Chem., 2010, 20, 9193–9199

восстановленный

окисленный

J. Mater. Chem., 2010, 20, 7131-7134

Электрохромизм

Перезаряжаемые оксиды: WO₃

Solar Energy Materials & Solar Cells 60 (2000) 201-262

• Циклическая стабильность (надо 10⁵-10⁶)

Оптимизация

Электрохромного материала

Ступенчатые режимы, оценка времени электрохромного перехода

- Интенсивность перехода на единицу затрат заряда
- Время перехода
- Циклическая стабильность

J. Mater. Chem., 2007, 17, 127–156

Solar Energy Materials & Solar Cells 60 (2000) 201-262

Оценка затрат заряда на электрохромный переход (электрохромная эффективность, coloration efficiency)

Гибридные материалы

Nano Lett. 2010, 10, 2727–2733

J. Phys. Chem. B **2003**, 107, 8351-8354

Composite

Absorbance

Electrochemistry Communications 10 (2008) 1851–1855

Langmuir 2007, 23, 6796-6800

Берлинская лазурь и аналоги

Electrochimica Acta 49 (2004) 4253–4258

Электрохимическая интеркаляция в электросинтезе

 $La_2CuO_4 + 2xOH \rightarrow La_2CuO_{4+x} + xH_2O + 2xe^{-1}$

Physical Review B 44 (1991) 2727-2731 Electrochimica Acta. Vol. 40. (1995) 209-212 Chem. Mater. 2001, 13, 2118-2126

Электрохимическая интеркаляция в электросинтезе

Chem. Mater. 1996, 8, 2232-2238

J. Mater. Chem., 1999, 9, 25-33

Chem. Mater. **1994,6**, 2172-2176

Слоистые: гидроксиды, графит...

Russian Chemical Bulletin, International Edition, Vol. 54, No. 8, pp. 1749-1767, August, 2005

Традиционный электроанализ

- Кондуктометрия (кондуктометрическое титрование)
- Потенциометрия (потенциометрическое титрование)
- Кулонометрия (гравиметрия, кулонометрическое титрование)
- Полярография
 - Полярография с накоплением
 - Адсорбционный полярографический анализ
 - Амперометрическое титрование
- Ионселективные электроды и биосенсоры

Pt | Ag | AgCl, 0.1 M HCl | стекло | раствор \vdots KCl, Hg₂Cl₂ | Hg | Pt

 Na^{+} (стекло) + H^{+} (раствор) \leftrightarrow

 \leftrightarrow Na⁺ (раствор) + H⁺ (стекло)

$$E_{cm} = E^0 + \frac{RT}{F} \ln(Ka_{H^+} + a_{Na^+})$$

Ионселективные электроды

Электроанализ

Electrochimica Acta 55 (2010) 1612–1618

Anal. Chem. 2003, 75, 5394-5398

Биосенсоры

Первое поколение (С.Андайк, Дж.Хикс 1967) Глюкоза + O_2^{GOx} - Глюконовая кислота + H_2O_2 $H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-$

Второе поколение

Третье поколение (в разработке)

Прямой перенос электрона с фермента на электрод

Берлинская лазурь - медиатор

Biosensors and Bioelectronics 21 (2005) 389-407

Analyte	Me-hexacyano- ferrate, Me:	Enzyme
Hydrogen peroxide	Fe	_
	Co (Fe ?)	_
	Cr (Fe ?)	-
	Fe, Cu	-
	Ti	-
	Cu	-
Glucose	Fe	Glucose oxidase
	Cr (Fe ?) Co (Fe ?) Cu Ni	Glucose oxidase Glucose oxidase Glucose oxidase Glucose oxidase
D-Alanine	Fe	D-Amino acid oxidase
Ethanol	Fe	Alcohol oxidase
Glutamate	Fe	Glutamate oxidase
Oxalate	Cr (Fe ?)	Oxalate oxidase
Choline	Fe	Choline oxidase

Электрохимическое детектирование

Углеродные материалы

SWNT-транзистор

Механический сигнал

J. Mater. Chem., 2011, 21, 8940

Microchim Acta (2011) 175:1-19

Сенсоры: тринитротолуол

- Выбор системы
- Выбор потенциала при котором есть оптимальный сигнал
- Построение калибровочной зависимости

Электрод: алмаз

 ϕ -NO + 2e + 2H⁺ $\rightleftharpoons \phi$ -NHOH

 ϕ -NHOH + 2e + 2H⁺ $\rightleftharpoons \phi$ -NH₂ + H₂O

