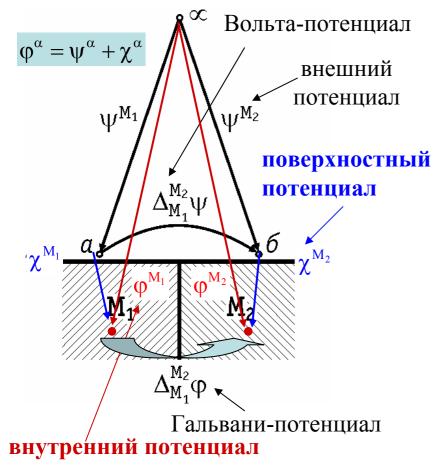
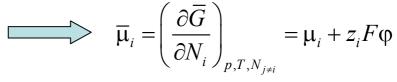
Электродное равновесие. Цепи. Электроды.


Васильев Сергей Юрьевич (wasq@elch.chem.msu.ru)

$$dG = -SdT + VdP + \sum_{i} \mu_{i} dN_{i}$$

Химическая свободная энергия Гиббса


$$d\overline{G} = -SdT + VdP + \sum_{i} \mu_{i} dN_{i} + F \sum_{i} z_{i} \varphi dN_{i}$$

Электрохимическая свободная энергия Гиббса

$$\mu_i = \left(\frac{\partial G}{\partial N_i}\right)_{p,T,N_{j\neq i}}$$

химический потенциал

(Э.Гуггенгейм, 1929 г.)

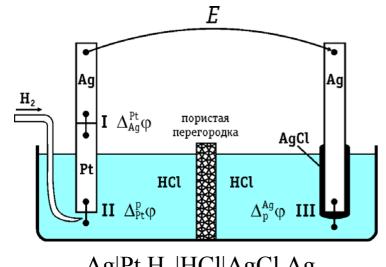
Равновесие:

$$0 = \overline{\mu}_i^{\beta} - \overline{\mu}_i^{\alpha} = (\mu_i^{\beta} - \mu_i^{\alpha}) + z_i F(\varphi^{\beta} - \varphi^{\alpha})$$

$$\Delta_{\alpha}^{\beta} \varphi = \varphi^{\beta} - \varphi^{\alpha} = \frac{\mu^{\alpha} - \mu^{\beta}}{zF}$$

Электрическую разность потенциалов можно измерить лишь между точками в одной фазе.

$$\Delta_p^{M} \varphi = const + \frac{RT}{zF} \ln a_{M^{+}}$$


(Уравнение Нернста для гальвани-потенциала, 1889 г.)

ЭДС электрохимической цепи

Правильно разомкнутая электрохимическая цепь — оканчивается одинаковыми металлами.

Равновесная электрохимическая цепь – равновесие на каждой фазовой границе, а разность потенциалов на концах цепи скомпенсирована от внешнего источника.

ЭДС цепи – разность потенциалов на концах равновесной электрохимической цепи.

Ag|Pt,H₂|HCl|AgCl,Ag

Pt, H₂, p = 1 atm | HA, $a_{\pm} = 1 \stackrel{..}{.}$ MA | M | Pt

$$E = E_{np} - E_{nee}$$

Стандартный электродный потенциал – электродный потенциал, измеренный в стандартных условиях (p = 1 атм, a = 1).

$$E = \Delta_{Ag}^{Pt} \varphi + \Delta_{Pt}^{P} \varphi + \Delta_{P}^{Ag} \varphi$$

$$e^{-}(Ag) \leftrightarrow e^{-}(Pt)$$

$$\Delta_{Ag}^{Pt} \varphi = \varphi^{Pt} - \varphi^{Ag} = \frac{\mu_{e}^{Pt} - \mu_{e}^{Ag}}{F}$$

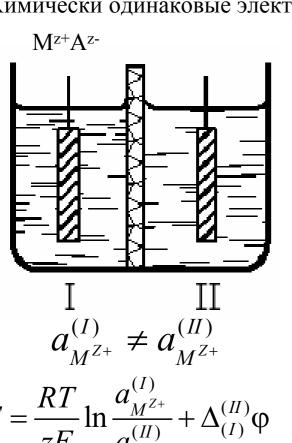
$$1/2H_{2} \leftrightarrow H_{\text{адс}} \leftrightarrow e^{-}(Pt) + H^{+}$$

$$\Delta_{Pt}^{P} \varphi = \varphi^{P} - \varphi^{Pt} = \frac{1}{F} \left(\frac{1}{2} \mu_{H_{2}} - \mu_{e}^{Pt} - \mu_{H^{+}}^{P} \right)$$

$$DAG = -nFE$$

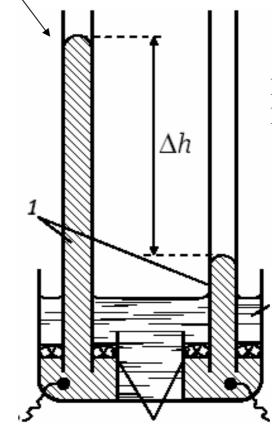
$$E = E_{0} + \frac{RT}{nF} \ln \frac{\prod a_{ox}^{V_{ox}}}{\prod a_{red}^{V_{red}}}$$

$$ypashehue Hephcma$$


$$AgCl + e^{-}(Ag) \leftrightarrow Ag + Cl^{-} \qquad \Delta_p^{Ag} \phi = \phi^{Ag} - \phi^p = \frac{1}{F} (\mu_{AgCl} + \mu_e^{Ag} - \mu_{Cl^-}^p - \mu_{Ag})$$

$$AgCl + 1/2H_2 \leftrightarrow Ag + HCl \qquad E = \frac{1}{F} \left(\frac{1}{2} \mu_{H_2} + \mu_{AgCl} - \mu_{HCl} - \mu_{Ag} \right) = \frac{-\Delta G}{F}$$

Классификация электрохимических цепей


- Физические (аллотропические и гравитационные)
- Концентрационные
- Химические

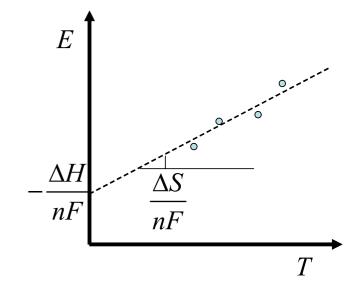
Химически одинаковые электроды

$$E = \frac{RT}{zF} \ln \frac{a_{M^{Z+}}^{(I)}}{a_{M^{Z+}}^{(II)}} + \Delta_{(I)}^{(II)} \varphi$$

- Цепи без переноса
- Цепи с переносом (контакт 2 растворов)
- Цепь с переносом и элиминированным диффузионным потенциалом

Гравитационная цепь Р.А.Колли, 1875

$$E = \frac{M_{Hg}g\Delta h}{1000F}$$


Если
$$\Delta h = 1$$
 м, $\Delta E = 20.4$ мкВ

Температурная зависимость ЭДС

$$\Delta G = \Delta H + T \frac{d(\Delta G)}{dT} \qquad E = -\frac{\Delta H}{nF} + T \frac{dE}{dT}$$

Уравнение Гиббса-Гельмгольца (p=const)

$$\frac{d(\Delta G)}{dT} = -\Delta S \qquad \frac{dE}{dT} = \frac{\Delta S}{nF}$$

Для гальванических элементов (E>0)

$$\frac{dE}{dT} < 0 \ (\Delta S < 0)$$

$$\frac{dE}{dT} = 0 \; (\Delta S = 0)$$

$$\Delta H < 0$$

$$\Delta H < 0$$

экзотермическая реакция

экзотермическая реакция нет тепловых эффектов

За счет ΔH совершается электрическая работа nFE и выделяется тепло $nFT\frac{dE}{dT}$

$$\frac{dE}{dT}$$

$$\frac{dE}{dT} > 0 \ (\Delta S > 0)$$

$$\Delta H \ll 0$$

реакция может быть как экзотермической, так и эндотермической

система охлаждается

$$E$$
 M_1 M_2 Ионные двойные слои M_1

$$E = \Delta \psi_{M1}^{M2} = \frac{1}{e_0} (W_e^{M1} - W_e^{M2})$$

$$M_1$$
 | раствор | M_2 | M_1

$$E = \Delta_{M1}^{M2} \psi + \Delta_p^{M1} \psi - \Delta_p^{M2} \psi$$

$$E = \left(\Delta_{p}^{M1} \psi + \frac{W_{e}^{M1}}{e_{0}}\right) - \left(\Delta_{p}^{M2} \psi + \frac{W_{e}^{M2}}{e_{0}}\right)$$

$$E = \Delta_{M1}^{M2} \Psi + (\Delta \varphi_1 + \Delta \varphi_2) + (\delta \chi_1^M - \delta \chi_2^M + \delta \chi_1^P - \delta \chi_2^P)$$

скачок в двойном слое

$$E_{K} = \Delta_{p}^{M} \psi + \frac{W_{e}^{M}}{e_{0}}$$
 (Е.А.Каневский, ~1950 г.)

$$+\underbrace{(\delta\chi_1^M - \delta\chi_2^M + \delta\chi_1^P - \delta\chi_2^P)}_{+}$$

 ≈ 0

«абсолютный» потенциал

$$E_K$$
(cB3) = -4.44 B

Электронное равновесие

$$M_{\it me} \rightleftarrows M_p \rightleftarrows M_p^+ + \overline{e}_p$$
 Металл – «труднорастворимая соль, состоящая из ионов металла и электронов» $\Delta_p^{\it m} \phi = const - \frac{RT}{F} \ln a_e$

 $M_{me}^+ + \overline{e}_{me}$

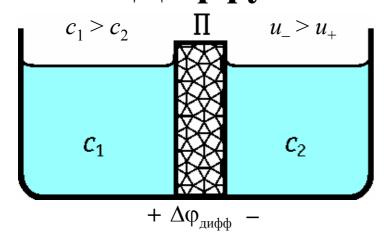
$$\Delta_p^{M} \varphi = const - \frac{RT}{F} \ln a_e$$

$$\Delta_p^{M} \varphi = const - \frac{RT}{F} \ln a_e$$

$$E_e^{0} = -2.87 \text{ B (CB3)}$$

$$Cu^{2+} + 2e^{-} \leftrightarrow Cu \qquad Cu^{2+} + e^{-} \leftrightarrow Cu^{+} \qquad Cu^{+} + e^{-} \leftrightarrow Cu$$

$$L = a_{Cu^{2+}} a_{e}^{2} \qquad K = \frac{a_{Cu^{2+}} a_{e}}{a}$$


$$\begin{split} E_{Cu^{2+}/Cu} &= E_{Cu^{2+}/Cu}^0 + \frac{RT}{2F} \ln L - \frac{RT}{F} \ln a_e = E_e^0 - \frac{RT}{F} \ln a_e \\ E_{Cu^{2+}/Cu} &= E_{Cu^{2+}/Cu}^0 + \frac{RT}{2F} \ln L - \frac{RT}{F} \ln K - \frac{RT}{F} \ln a_e = E_e^0 - \frac{RT}{F} \ln a_e \\ E_{Cu^{+}/Cu} &= E_{Cu^{+}/Cu}^0 + \frac{RT}{2F} \ln L - \frac{RT}{F} \ln A_e = E_e^0 - \frac{RT}{F} \ln a_e \\ E_{Cu^{2+}/Cu^{+}} &= E_{Cu^{2+}/Cu^{+}}^0 + \frac{RT}{F} \ln K - \frac{RT}{F} \ln a_e = E_e^0 - \frac{RT}{F} \ln a_e \\ E_{Cu^{2+}/Cu^{+}} &= E_{Cu^{2+}/Cu^{+}}^0 + \frac{RT}{F} \ln K - \frac{RT}{F} \ln a_e = E_e^0 - \frac{RT}{F} \ln a_e \\ E_{Cu^{2+}/Cu^{+}} &= \frac{3\sqrt{L/4}}{4} = 4.68 \cdot 10^{-37} \end{split}$$

$$K = \exp\frac{F(E_e^0 - E_{Cu^{2+}/Cu^+}^0)}{RT} =$$

$$[Cu^{2+}] = \sqrt[3]{L/4} = 4.68 \cdot 10^{-3}$$

$$E_p^{(Cu|H_2O)} = -0.738B$$

Диффузионный потенциал

 Na^+

Для «идеального» раствора

$$\frac{\dot{J}_{+}}{c_{+}} = \frac{\dot{J}_{-}}{c_{-}} \quad \dot{J}_{i} = -D_{i} \operatorname{grad} c_{i} - \frac{|z_{i}| F}{RT} D_{i} c_{i} \operatorname{grad} \varphi$$

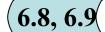
$$\operatorname{grad} \varphi = \frac{D_{-} - D_{+}}{z_{+} D_{+} + |z_{-}| D_{-}} \frac{RT}{F} \frac{\operatorname{grad} c}{c} \qquad D_{i} = \frac{RT}{|z_{i}| F} u_{i}$$

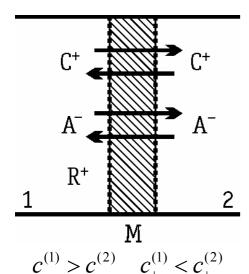
$$j = -D_{9\phi\phi} \operatorname{grad} c$$
 $D_{9\phi\phi} = \frac{(z_{+} + |z_{-}|)D_{+}D_{-}}{z_{+}D_{+} + |z_{-}|D_{-}}$

$$\Delta \phi_{\text{дифф}} = \frac{D_{-} - D_{+}}{z_{+} D_{+} + \mid z_{-} \mid D_{-}} \frac{RT}{F} \ln \frac{c_{2}}{c_{1}} = -\frac{RT}{F} \left(\frac{t_{-}}{z_{-}} + \frac{t_{+}}{z_{+}} \right) \ln \frac{c_{2}}{c_{1}} \qquad t_{i} = \frac{u_{i}}{\Sigma u_{i}}$$
 эффективный коэффициент диффузии электролита

эффективный электролита

$$\Delta \phi_{\text{дифф}} = -\frac{RT}{F} \int_{I}^{II} \sum \frac{t_{i}}{z_{i}} d \ln a_{i}$$

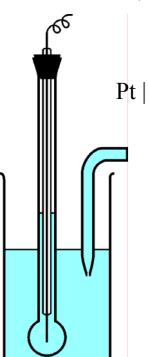

$$\Delta \phi_{\text{дифф}} = -\frac{1}{F} \int_{I}^{\Sigma} \frac{1}{z_{i}} d \ln a_{i}$$


$$M.\Pi \text{ланк (1890 г.)}$$

$$\xi = \exp\left(\frac{F \Delta \phi_{\partial u \phi \phi}}{RT}\right) \frac{\xi \Sigma(\lambda_{+}^{0} c_{+}^{"}) - \Sigma(\lambda_{+}^{0} c_{+}^{"})}{\Sigma(\lambda_{-}^{0} c_{-}^{"}) - \xi \Sigma(\lambda_{-}^{0} c_{-}^{"})} = \frac{\ln\left(\frac{\Sigma c_{i}^{"}}{\xi \Sigma c_{i}^{"}}\right)(\xi \Sigma c_{i}^{"} - \Sigma c_{i}^{'})}{\ln\left(\frac{\xi \Sigma c_{i}^{"}}{\Sigma c_{i}^{'}}\right)(\Sigma c_{i}^{"} - \xi \Sigma c_{i}^{'})}$$

$$\Delta \phi_{\partial u \phi \phi} = \frac{RT}{F} \frac{\Sigma \left[\frac{\lambda_i^0}{z_i} (c_i^{"} - c_i^{'}) \right]}{\Sigma \left[\lambda_i^0 (c_i^{"} - c_i^{'}) \right]} \ln \frac{\Sigma (\lambda_i^0 c_i^{'})}{\Sigma (\lambda_i^0 c_i^{"})}$$

Мембранное равновесие



$$\mu_{+}^{(1)} + F \varphi^{(1)} = \mu_{+}^{(2)} + F \varphi^{(2)}$$
 $\mu_{-}^{(1)} - F \varphi^{(1)} = \mu_{-}^{(2)} - F \varphi^{(2)}$

$$E_D = \varphi^{(1)} - \varphi^{(2)} = \frac{RT}{F} \ln \frac{a_-^{(1)}}{a_-^{(2)}} = \frac{RT}{F} \ln \frac{a_+^{(2)}}{a_+^{(1)}}$$
 (Ф.Доннан, 1911 г.)

мембранная (доннановая) разность потенциалов

$$c_{-}^{(1)} = \frac{c_R + \sqrt{c_R^2 + 4c^2}}{2} \qquad E_D = \frac{RT}{F} \ln \left| \frac{c_R}{2c} + \sqrt{\left(\frac{c_R}{2c}\right)^2 + 1} \right| \approx \frac{RT}{F} \ln \frac{c_R}{c}$$

Pt | Ag | AgCl, 0.1 M HCl | стекло | раствор :: KCl, Hg₂Cl₂ | Hg | Pt

$$E_{cm} = E_{ac} + \frac{RT}{F} \ln \frac{a_{H^+}^{(2)}}{a_{H^+}^{(1)}}$$

 Na^+ (стекло) + H^+ (раствор) $\leftrightarrow Na^+$ (раствор) + H^+ (стекло)

$$K = \frac{a'_{H^{+}} a_{Na^{+}}}{a'_{Na^{+}} a_{H^{+}}} \quad a'_{H^{+}} + a'_{Na^{+}} = a \quad \Longrightarrow \quad \frac{a_{H^{+}}}{a'_{H^{+}}} = \frac{a_{Na^{+}} + Ka_{H^{+}}}{Ka}$$

$$E_{cm} = E^0 + \frac{RT}{F} \ln(Ka_{H^+} + a_{Na^+})$$
 (Б.Никольский)

Классификация электродов

$$M|M^{z+}$$

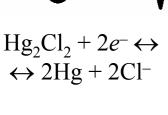
$$\mathbf{M}^{z+} + ze^{-} = \mathbf{M}$$

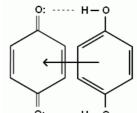
$$E = E^0 + \frac{RT}{zF} \ln a_{M^{z+}}$$

M, MA|A^{z-} M_{v+}A_{v-} +
$$ne^- = v_+M + v_-A^{z-}$$
 $E = E^0 - \frac{RT}{|z_-|F|} \ln a_{A^{z-}}$

$$E = E^0 - \frac{RT}{|z_-|F|} \ln a_{A^{z_-}}$$

Электрод II рода

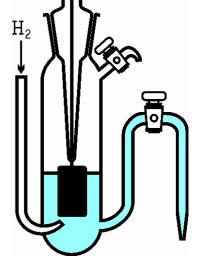

Электрод І рода


$$Ag,AgCl,PbCl_2|Pb^{2+}$$
 $2AgCl+2e^-+Pb^{2+}=2Ag+PbCl_2$ $E=E^0+\frac{RT}{2F}\ln a_{Pb^{2+}}$ Эл. III рода

Окислительно-восстановительный электрод: окисленная и восстановленная формы – в растворе. Материал электрода не участвует в реакции.

Газовый электрод: окисленной или восстановленной формой является молекула в газовой фазе, диссоциативно адсорбирующаяся на инертном электроде.

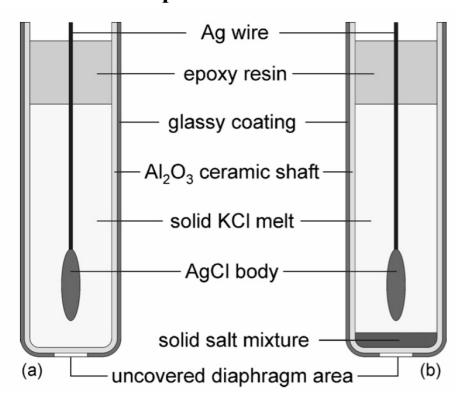
рН чувствительный электрод: при протекании реакции высвобождаются или связываются протоны.



Хингидронный электрод

$$Q + 2e^- + 2H^+ = QH_2$$

$$E = E_0 + \frac{RT}{2F} \ln \frac{a_Q a_{H^+}^2}{a_{QH_2}} \approx E_0 + \frac{RT}{F} \ln a_{H^+} = E_0 - 0.059 \, pH$$

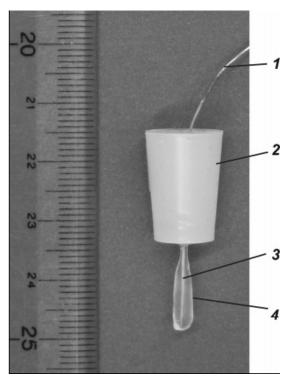


$$H^+ + e^- \leftrightarrow 1/2H_2$$

Электроды сравнения

	Reference electrode	Potential versus SHE,	Analogues	Media
Стандартный во	одородный //	V (aqueous systems,		
отапдартный во		recommended values		
		for 25°C)		
<u>Каломельный</u>	Calomel electrodes		Mercurous bromide,	aqueous
насыщенный	saturated (SCE)	0.241(2)	iodide, iodate, acetate,	and mixed (with
нормальный	normal (NCE)	0.280(1)	oxalate electrodes	alcohols or dioxane)
децинормальный decinormal		0.333(7)		
<u> Хлорсеребряный</u>	Silver-chloride	0.197(6)	Silver cyanide, oxide,	aqueous, mixed, abs.
	electrode (saturated		bromate, iodate,	alcoholic
	KCl)		perchlorate;	
<u>Ртутносульфатный</u>			nitrate	aprotic
	Mercury-mercurous	0.6151(5)	Ag/Ag_2SO_4 ,	aqueous, mixed
	sulphate electrode		Pb/Pb_2SO_4	
<u>Оксиднортутный</u>	Mercury-mercuric	0.098		aqueous, mixed
	oxide electrode			
<u>Хингидронный</u>	Quinhydrone		chloranil, 1,4-	any with sufficient
	electrode		naphtoquinhydrone	solubility of
	0.01 M HCl	0.586(8)		components
	0.1 M HCl	0.641(4)		

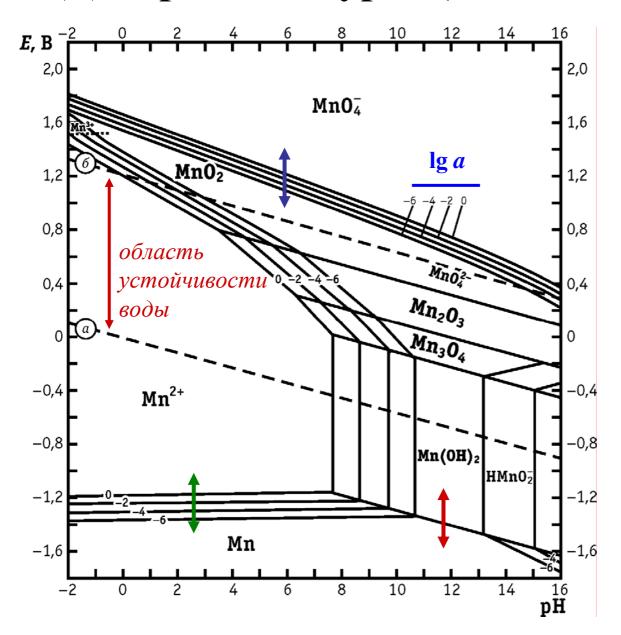
Твердотельные электроды сравнения



W.Vonau, W.Oelssner, U.Guth, J.Henze, Sensors and Actuators B 144 (2010) 368-373

Если нельзя иначе:

- Квази-электроды сравнения
- Динамические электроды сравнения


На основе гидрофобных ионных жидкостей

1-methyl-3octylimidazolium bis-(trifluoromethylsulfonyl)imide

T.Kakiuchi, T.Yoshimatsu, N.Nishi, Anal. Chem. 2007, 79, 7187-7191

Диаграммы Пурбэ (M.Pourbaix)

$$Mn^{2+} + 2e^{-} = Mn$$

 $E^{0} = -1.17 B$

$$MnO_4^- + 3e^- + 4H^+ = MnO_2 + 2H_2O$$

 $E^0 = +1.69 B$

$$MnO_4^- + 3e^- + 2H_2O = MnO_2 + 4OH^-$$

 $E^0 = +0.60 B$

$$Mn(OH)_2 + 2e^- = Mn + 2OH^-$$

 $E^0 = -1.56 B$