Основы химии высоких энергий и принципы радиационного модифицирования материалов

> <u>Вопросы и консультации</u>: dtyurin@rc.chem.msu.ru

О чем пойдет речь (Часть 1)

Химия высоких энергий: скальпель или дубинка?

- Энергетическая шкала в химии
- Термическая химия и химия высоких энергий
- Электронное возбуждение и ионизация молекул: фотохимия и радиационная химия
- Энергетический выход: «КПД» химического использования излучения
- Временная шкала радиационно-химических и фотохимических процессов
- Первичные активные частицы: ион-радикалы, электроны и возбужденные состояния
- Зарядовый и спиновый контроль в реакциях ионрадикалов
- Природа селективности первичных радиационнохимических процессов

Физические методы инициирования химических реакций

- Нагревание («термическая химия»)
- Действие света в УФ и видимой области (фотохимия)
- - ионизирующего излучения (радиационная химия)
- - электрического разряда (плазмохимия)
- - мощного ИК-излучения (ИК-лазерохимия)
- - ультразвука (сонохимия)
- механические воздействия (*механохимия:* измельчение, деформирование, трение, ударное сжатие)

Энергетическая шкала в химии І:

некоторые соотношения и характерный масштаб

 $E = hv = \frac{hc}{\lambda} = hc \overline{v}$ ($\overline{v} = \frac{1}{\lambda}$) $h = 6.63 \cdot 10^{-34}$ Дж; $c = 3 \cdot 10^8$ м/с ($3 \cdot 10^{10}$ см/с)

Молекулярная шкала	Лабораторная шкала			
е = 1.6·10 ⁻¹⁹ Кл	F = eN _A ≈ 96500 Кл			
k _B = 1.38 [.] 10 ⁻²³ Дж/К	R = k _B N _A = 8.31 Дж/(моль [.] К)			
1 эВ	96.5 кДж/моль (23 ккал/моль)			
«Тепловой масштаб»: E = k _B T (E = RT) при T = 293 К				
~0.025 эВ ~2.4 кДж/моль				
Внутримолекулярные колебания (V = 400 – 4000 см ⁻¹)				
0.05 – 0.5 эВ 5 – 50 кДж/моль				
Диссоциация химических связей (D ₀)				
1 – 5 эВ	100 – 500 кДж/моль			
Первый потенциал электронного возбуждения (ЕР)				
1 – 10 эВ 100 – 1000 кДж/моль				
Первый потенциал ионизации (IP)				
~ 10 эВ ~ 1000 кДж/моль				

Распределение Максвелла- Больцмана. Релаксация. Выделение подсистем

$$n_f(x, y, z, v_x, v_y, v_z) = n_0 \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left(-\frac{E_{\Pi}(x, y, z) + E_{K}(v_x, v_y, v_z)}{kT}\right)$$

- Условие сохранения: быстрая релаксация
- Адиабатическое приближение разделение молекулярной системы на «быструю» и «медленную» подсистемы (частный случай – приближение Борна- Оппенгеймера)

(независимые координаты)

- Подсистемы:
- Быстрая (электронная) **т**_{rel} ~ **10**⁻¹⁵ **с**
- Медленная (ядерная колебательно-вращательная) т_{rel} > 10⁻¹⁴ с
 Выделение других подсистем:
- Межмолекулярная («решеточная») (в конденсированных средах) т_{rel} ~10⁻¹² с
- Спиновая **т**_{rel} ~ **10**⁻⁷ **с**
- При непосредственной накачке быстрой подсистемы релаксация может «не успевать» вследствие ограничений на обмен энергией между подсистемами

«Термическая химия» и химия высоких энергий

- «Термическая химия»: энергия «закачивается» в среду, реагирующие молекулы отбираются статистически (энергетическая схема «снизу – вверх»)
- Квазиравновесный режим
- Распределение Максвелла-Больцмана сохраняется

 $T_{rel} << \tau_{chem}$

• Аррениусовская кинетика:

 $k = A^* exp(-E_A/RT)$

- «Термическая селективность»: отбор каналов реакций по минимальной Е_А
- Для «активации» часто требуются высокие Т

• Химия высоких энергий: энергия прицельно передается большими порциями отдельным молекулам и затем «разменивается» (энергетическая схема «сверху –вниз»): $M \rightarrow M^* (E^* >> k_BT)$ $T^* = E^*/k_B >> T$

(«горячие» частицы в холодной среде)

- Существенно неравновесный режим
- Распределение Максвелла-Больцмана не сохраняется

 $T_{rel} \sim \tau_{chem}$

- Неаррениусовская кинетика (в пределе k_{eff} не коррелирует с Т)
- Правила отбора ??? «дубинка» ?
- Возможна диссоциация молекул при очень низких Т (например, при Т < 10 К в матрице твердого Ar), т. к. обычно E^{*} > D₀

Химическая реакция как один из конкурирующих каналов релаксации

 $\bullet M \rightarrow M^{\bullet} (+ e^{-})$

•М* - электронно-возбужденная молекула (М*), колебательновозбужденная молекула (М^v), молекулярный ион (М^{+.})...

•Формальная схема:

Многоступенчатый характер безызлучательной релаксации, например:

$$\begin{array}{c} \mathsf{M}^* \to \mathsf{M}^{\vee} \to \mathsf{M} \\ \downarrow & \downarrow \\ \mathsf{P}_1 & \mathsf{P}_2 \end{array}$$

+ «запрещенные» процессы с изменением спиновой мультиплетности (полная картина для электронно-возбужденных состояний: <u>*диаграмма Яблонского*</u>)

Особенности релаксационных процессов в химии высоких энергий

- Диапазон времен релаксации: т_{rel} ~ 10⁻¹⁴ 10⁻⁹ с
- Роль «смешивающих взаимодействий» (электрон-фононное, вибронное, спин-орбитальное), обеспечивающих обмен энергией между различными подсистемами -> необходимость выхода за пределы адиабатического приближения
- Необходимость учета конкретных релаксационных мод молекулы и среды
- Возможность образования «горячих» (трансляционновозбужденных) частиц
- Многоканальность химических реакций

Энергетическая шкала в химии II: химия и излучения

Энергетический порог радиационной химии: E > IP («красная граница») Практически в радиационной химии и технологиях используются излучения с E = 10 кэB – 10 МэB (до 100 – 200 МэB для тяжелых ионов)

Ионизация и электронное возбуждение молекул: радиационная химия и фотохимия

радиационная химия и фотохимия - методы химии высоких энергий, основанные на «накачке» электронной подсистемы молекул

• Радиационная химия

M -₩→ M+·, M*, e⁻

(ионизация и возбуждение – фотоны, электроны, ионы)

- Неизбирательность первичного поглощения энергии
- Образование ион-электронных пар (ионизация - > 80% в конденсированных средах)
- Широкий энергетический спектр «действующих частиц» (более 80% электроны с энергией 10 – 100 эВ, независимо от Е и вида излучения)
- Возможность заселения оптически недостижимых (запрещенных) возбужденных состояний
- Неоднородность пространственного распределения первичных актов: кластеры

- Фотохимия
- $M + hv \rightarrow M^*$

(электронное возбуждение - фотоны)

- Селективность первичного поглощения (возможность резонансного возбуждения)
- Заселяются оптически достижимые («разрешенные») состояния
- Пространственное распределение: изолированные частицы или пары

(может рассматриваться как «частный случай» радиационной химии)

Энергетический выход в фотохимии и радиационной химии

• Радиационная химия

 Поглощенная доза – энергия, поглощенная в единице массы вещества:

D = dE/dm

(для всех разделов химии высоких энергий) **1 Гр** (Грэй) = 1Дж/ кг = 6.24·10¹⁸ эВ/кг

- Мощность поглощенной дозы
 I = dD/dt (Гр/с)
- Радиационно-химический выход число образовавшихся или претерпевших превращение молекул на единицу поглощенной энергии:

G = dN/dE = dC_m/dD __ – число молекул в единице м

- (С_т число молекул в единице массы вещества)
- «Молекулы» обобщенное понятие (включая радикалы, ионы и др. частицы)
- *G имеет смысл обобщенного* энергетического выхода

• Фотохимия

 Квантовый выход – отношение числа актов превращения («событий») данного типа к числу поглощенных квантов:

$\boldsymbol{\varphi}_i = \boldsymbol{N}_i / \boldsymbol{N}_{phot}$

«Событие» - химическая реакция, люминесценция, безызлучательная конверсия

• $M + hv \rightarrow M^*$ $\varphi = 1$

 $\mathsf{M}^* \rightarrow \mathsf{X}_i \ (+ \ hv, \ kT) \qquad \pmb{k_i}, \ \pmb{\varphi_i}$

$$\sum \varphi_i = 1$$
 $\varphi_i = \frac{k_i}{\sum k_i}$

- *ф* характеризует вероятность реализации данного канала
- Энергетический выход фотохимической реакции (по аналогии с G):

 $G_i' = \frac{\varphi_i}{1}$

Способы выражения энергетического выхода. «КПД» химического использования излучения

• Начальный (истинный) радиационно-химический выход продукта Х

$$G^{0}(X) = \left[\frac{dC_{m}(X)}{dD}\right]_{D=0}$$

(характеристика радиационно-химического процесса, не зависит от D)

- Эффективный выход: $G_{eff}(X) = \frac{C_m(X)}{D}$ в общем случае $G_{eff} = f(D)$
- Выход расходования исходного вещества $[\Delta C_m = C_m^0 C_m(D)]$

$$G_{eff}(-M) = \frac{\Delta C_m(M)}{D}$$

• G обычно выражают в числе молекул (частиц) на 100 эВ поглощенной энергии (1 част/100 эВ \approx 1.04·10⁻⁷ моль/Дж) $G(частиц / 100 эB) = 9.65 \cdot 10^6 \frac{C}{\rho D}$

С - концентрация, моль/литр; *р* – плотность, г/см³ (кг/дм³), *D* – доза, Гр

Максимальная доля поглощенной энергии излучения, затраченной на диссоциацию молекул может достигать 40 – 50% (при G ~ 10)

Временная шкала радиационно-химических и фотохимических процессов

1. <u>«Физическая стадия»:</u> ионизация и возбуждение (т < 10⁻¹⁴ с)

M → M+·, M*, e⁻

Излучение не приводит непосредственно к разрыву химических связей (сначала работает только «быстрая» электронная подсистема: т < т_v)!

2. <u>«Физико-химическая» стадия</u>: быстрые реакции первичных частиц до установления термического равновесия и однородного пространственного распределения

жидкость → т = 10⁻¹³ - 10⁻⁷ с;

тердое тело и полимеры → *т* = 10⁻¹³ - 10⁵ с

химии высоких энергий:

 Взаимодействие быстрого электрона с молекулой :

~ 10⁻¹⁸ – 10⁻¹⁷ c (1 - 10 ac)

• Электронное возбуждение и электронная релаксация:

~ 10⁻¹⁶ – 10⁻¹⁴ c (100 ac – 10 ¢c)

- Внутримол. колебания (т_v):
- ~ 10⁻¹⁴ 10⁻¹³ c (10 100 ¢c)
- Межмол. колебания
- ~ **10**⁻¹¹ **10**⁻¹³ c (*10 100* ¢c)
- Сольватация электрона
- ~ 10⁻¹² 10⁻¹⁰ с (1 100 пс)
- «Диффузионный скачок» (*L* ~ *R_M*)
 ~10⁻¹¹с (10 пс)
- Спиновая релаксация
- ~ 10⁻⁹ 10⁻⁷ c (1 100 Hc)
- Диффузия L ~100 нм (гомогенизация):

~ 10⁻⁷ с (*100 нс* - жидкая вода)

Диффузионно-контролируемые реакции [R] ~ 10⁻⁷ – 10⁻⁸ М (объем)
 ~ 10⁻³ – 10⁻² с (1 - 10 мс)

Первичные активные частицы. 1. Катион-радикалы

• Физические характеристики:

Z = +1, S = ½ (чувствительность к электрическим и магнитным полям, ЭПР); (часто) близко расположенные уровни (поглощение в видимой области)

• Общие химические свойства:

высокая реакционная способность (стабилизация только в инертных матрицах при низких температурах); (как правило) высокая кислотность

• Основные типы реакций:

M⁺· + e⁻ → M^{**}(рекомбинация с электронами) RH⁺· + RH → RH₂⁺ + R· (ион-молекулярная реакция переноса протона) M⁺· → M_x + r ⁺· (распад на молекулу и катион-радикал) M⁺· → R⁺ + r· (распад на катион и радикал) HCOOCH₂CH₃⁺· → HC(OH⁺)OCH₂CH₂· (изомеризация – образование *дистоническких катион-радикалов*) C₂H₄⁺· + C₂H₄ → C₄H₈⁺· (присоединение)

Реакции катион-радикалов характеризуются высокой специфической селективностью (зарядовый и спиновый контроль)

Первичные активные частицы. 2. Электроны

Физические характеристики: ۲

 $Z = -1, S = \frac{1}{2}$;

высокая подвижность;

время термализации ~ 10-13 с

возможность локализации и сольватации в конденсированных средах

$$\mathbf{e}_{m} \rightarrow \mathbf{e}_{qf} \rightarrow \mathbf{e}_{loc} \rightarrow \mathbf{e}_{s(tr)}$$

Общие химические свойства:

очень сильный восстановитель; реакционная способность зависит от степени сольватации

Основные типы реакций: М+ + е → М* (рекомбинация с положительными ионами)

 $M + e_{qf}(e_s) \rightarrow M^-$ (присоединение – образование анион-радикалов) RX + $e_{qf}(e_s) \rightarrow [RX^-] \rightarrow R^- + X^-$ (диссоциативное присоединение, X = CI, Br, NO_{2..}...)

Подробнее процессы сольватации электрона, физические и ۲ химические свойства е свойсттва е свойства е

Первичные активные частицы. 3. Возбужденные молекулы

- Возбужденные состояния, образующиеся в фотохимии и радиационной химии могут различаться по спиновой мультиплетности (2S + 1 - число подсостояний с различным M_S для данного состояния):
- ${}^{1}M^{*}(\mathbf{S})$ синглетные (S = 0)
- ³*M** (**T**) триплетные (S = 1)
- Для каждого случая набор состояний различной энергии: **S_{1,...}S_n, T₁... T_n**
- Физические и химические процессы (упрощенная схема):
- ¹**M**^{*} → ¹**M** + hv (ϕ *Π*: $T_f \sim 10^{-9} 10^{-10}$ c)
- ³M^{*} → ¹M + h_V' -*(ΦC : T_D ≥ 10⁻⁶ c, sanpem no cnuhy)
- ¹М^{*} → ³М^{*} (ИКК т_{іsc} ~ 10⁻⁶ 10⁻⁸ с, запрет по спину)
- М^{*} → М^v (ВК) → М + kT (КР) (безызлучательная дезактивация)
- М^{*} → R + H (распад на радикал и атом H)
- М^{*} → R·₁ + R·₂ (радикальный распад эффект клетки)
- М* → продукты (молекулярный распад, изомеризация, перегруппировки и др.)

ФЛ – флуоресценция (fluorescence, f); ФС – фосфоресценция (phosphorescence, p);
 ИКК – интеркомбинационная конверсия (intersystem crossing, ISC); ВК – внутренняя конверсия (internal conversion, IC); КР – колебательная релаксация (vibrational relaxation, VR)

Специфика электронно-возбужденных состояний в радиационной химии и фотохимии

• Радиационная химия

- В результате процессов ионэлектронной рекомбинации могут заселяться как синглетные, так и триплетные состояния (в пределе T/S = 3 : 1)
- Образуется широкий энергетический спектр возбужденных состояний (как синглетных, так и триплетных)
- Велика вероятность заселения высших колебательных состояний

• Фотохимия

- При поглощении света первично заселяются только синглетные возбужденные состояния (спиновый запрет)
- Как правило, образуются низшие синглетные возбужденные состояния (S₁) («оптически достижимые»)

О чем пойдет речь (Часть 2) Особенности взаимодействия ионизирующего излучения с веществом: первичные нанострукутуры

- Взаимодействие излучения с веществом (немного радиационной физики)
- Обобщение: линейная передача энергия
- Пространственное распределение событий ионизации
- Формирование, эволюция и проявления радиационно-индуцированных наноструктур
- «Трековые материалы»:

Взаимодействие заряженных частиц с веществом

- Основной механизм потерь энергии неупругие соударения с электронами (ионизационные потери – ионизация и возбуждение молекул среды)
- <u>Н. Бор (нерелятивистский расчет):</u>

 $-(dE/dx)_{ion} = \frac{4\pi z^2 e^4 N_e}{m_o V^2} \ln \frac{2m_o V^2}{I} \qquad m_0 - \text{масса покоя электрона,} \\ e - заряд электрона$

Характеристики ионизирующей частицы: V – скорость, z – зарядовое число Характеристики среды: N_e – объемная концентрация электронов N_e = N_Aρ(Z/A) N_A – число Авогадро, Z – am. номер, A – am. масса (обычно Z/A ≈ 0.5 → N_e ~ρ)

 I – средняя энергия «удаления электрона» (среднее геометрическое потенциалов ионизации и возбуждения молекул среды)

- dE/dx ~ 1/V² ~ M/E (M масса ионизирующей частицы)
- Х. Бете, Дж. Ашкин (с учетом релятивистских поправок):

$$-(dE/dx)_{ion} = \frac{4\pi z^2 e^4 N_e}{m_o V^2} \ln[\frac{2m_o V^2}{I(1-\beta^2)} - \beta^2] \qquad \beta = V/c \ (c - cкорость cвета)$$

• случай «нерелятивистских» электронов (E < 0.5 МэВ):

$$-(dE/dx)_{ion} = \frac{2\pi z^2 e^4 N_e}{m_o V^2} \ln[\frac{m_o V^2}{2I} \sqrt{\frac{e}{2}}]$$

Взаимодействие электромагнитного ионизирующего излучения с веществом

1. Фотоэффект: удаление связанного электрона

$$E_{\rm e} = hv - E_{\rm ce.}$$

При *hv* = 10 – 500 кэВ:

Сечение в расчете на один атом среды $\tau_a \approx kZ^4/(h\nu)^3 (Z - атомный номер)$ Масс. коэф. поглощения $\tau/\rho \sim Z^3/(h\nu)^3$ (кроме Н и очень тяжелых элементов) (основной механизм при hv < 30 кэВ, для тяжелых элементов – до 150 кэВ) <u>2. Эффект Комптона: некогерентное рассеяние на «слабо связанном»</u> электроне

$$E_{e} = hv - hv^{2}$$

(v,v' – частоты падающего и рассеянного излучения) Масс. коэф. поглощения ор практически не зависит от Z (основной механизм при hv = 150 кэВ – 5 МэВ)

3. Эффект образования электрон-позитронных пар

$$E_{\rm e} + E_{\rm p} = hv - 2m_0 c^2$$

Пороговая энергия образования пары: $h_V \ge 2m_0 c^2$ (1.02 МэВ) Массовый коэф. поглощения $\kappa/\rho \sim Z^2/A \sim Z$

(основной механизм при hv > 10 МэВ – практически не используется в радиационной химии и технологиях)

Суммарно: $\mu/\rho = \tau/\rho + \sigma/\rho + \kappa/\rho$

Обобщение: линейная передача энергии

- Основная часть энергии передается вторичными электронами
- Линейная передача энергии (ЛПЭ, LET) энергия, переданная среде на единицу длины «трека» ионизирующей частицы (для фотонов – вторичные электроны с соответствующей средней энергией)

LET = *dE/dI* (эВ/нм ≡ кэВ/мкм)

ЛПЭ (LET) - усредненная характеристика, т.к. E = E(I)

Электроны (1 МэВ), γ-кванты (1.25 МэВ): LET ≈ 0.2 эВ/нм электроны (10 кЭв): LET = 2.3 эВ/нм Протоны (1 МэВ): LET ≈ 27 эВ/нм (10 МэВ): LET ≈ 4.7 эВ/нм Тяжелые многозарядные ионы: LET > 1000 эВ/нм

Пространственное распределение первичных продуктов радиолиза. «Шпоры» и треки - 1.

Трек ускоренного электрона (E ~ 1 МэВ) или γ-кванта (LET ~ 0,2 эВ/нм) показана заключительная часть трека

Пространственное распределение первичных продуктов радиолиза. «Шпоры» и треки - 2.

Трек тяжелой заряженной частицы (LET > 20 эВ/нм)

Вдоль траектории частицы формируется цилиндрическая область сплошной ионизации («колонка из шпор» - плотный трек) Диаметр трека растет с ростом LET

В любом случае для начальных концентраций первичных продуктов радиолиза C_{лок.} >> C_{ср.}

Эволюция первичных радиационноиндуцированных наноструктур

 <u>Жидкость</u>: диффузионное размывание шпор и треков в конкуренции с рекомбинацией и другими локальными химическими реакциями (рекомбинационно-диффузионная модель)

$$\frac{\partial C_i(r,t)}{\partial t} = D_i \nabla^2 C_i - \sum k_{ij} C_i C_j$$

«время жизни» шпор в жидкой воде – 10 – 100 нс (до полной гомогенизации) вероятность рекомбинации растет с ростом ЛПЭ

• <u>Полимеры и твердые молекулярные материалы:</u> «ступенчатая эволюция» первичных наноструктур

рекомбинация первичных ионов с электронами протекает в той же временной шкале (до 10 - 100 нс)

возможность «размывания» трековых структур за счет электронных процессов (миграция электрона и дырки)

ступенчатая рекомбинация радикалов (зависимость от релаксационного спектра полимера)

продукты не диффундируют из шпоры (трека) – изменение микроструктуры материала → возникновение «образа» первичной наноструктуры (особенно, при больших ЛПЭ)

возможность локального разогрева для плотных трековых структур, возникновение механических напряжений, ударных волн

Радиационно-индуцированные первичные наноструктуры: резюме

- ИИ создают («наводят») наноструктуры различной формы и размера в изначально однородной изотропной среде, независимо от химического состава
- Характер «картинки» определяется параметрами ИИ (в первом приближении – величиной ЛПЭ)
- Время жизни и возможности проявления первичных радиационно-индуцированных наноструктур зависят от свойств среды

Особенности действия излучений с различной величиной ЛПЭ на полимеры

Сшивание – обычно результат рекомбинации макрорадикалов → вероятность сшивания растет с ростом ЛПЭ

Деструкция – мономолекулярный процесс

Растворимость полимеров повышается при деструкции и падает при сшивании

Для излучений с очень высокими значениями ЛПЭ в «сердцевине» трека часто преобладает деструкция, на периферии - сшивание

Проявление трековых структур в полимерах: химическое травление

- Зависимость локальной скорости химического травления от расстояния от оси трека тяжелого иона в пленке ПЭТФ (а)
- Влияние величины ЛПЭ на характеристический диаметр трека (б) (граница соответствует максимальной плотности сшивания – минимальной растворимости)

• d* ~ (LET)^{0.5}

[P.Yu. Apel et al., *Nucl. Instr. Meth. Phys. Res. B.*, 1998, **146**, 468;
P.Yu. Apel et al., *Radiat. Meas.*, 1999, **31**, 51]

Получение нанопористых структур: трековые мембраны

- Схема получения нанопористых трековых мембран с использованием ускоренных тяжелых ионов (from A.G. Chmielewski et al., *Nucl. Instr. Meth. Phys. Res. B*, 2007, **265**, 339).
- Используемые полимеры ПЭТФ, поликарбонат, полипропилен, ПВДФ...

Трековые мембраны: разнообразие возможностей

200 нм

- Трековые мембраны различной структуры, (СЭМ-изображения)
- (а)– мембрана с цилиндрическими параллельными каналами
- (б) микрофильтрационная (d ~ 200 нм)
- (в) –асимметричная ультрафильтрационная
- (г) «колодцы» с пористым дном

[данные группы П.Ю. Апеля: P.Yu. Apel et al., *Nucl. Instr. Meth Phys. Res. B*, 2003, **209**,329; ibid, 2003, **208**, 11]

возможность получения пор различной формы с d = 10 нм – 10 мкм управление : 1) физические параметры (ЛПЭ, интенсивность); 2) режим травления; 3) химическая и фотохимическая обработка перед травлением

10 мкм

Применение трековых мембран

 Ультрафильтрационная очистка плазмы крови (плазмаферез)

Другие биомедицинские приложения

Культивация клеток Изучение клеточной активности

Очистка деионизированной воды для микроэлектроники

Ультрафильтрация напитков

Аналитические приложения

Схема технологической установки для получения трековых мембран для плазмафереза (ожидаемая производительность – до 1 млн м² мембранной пленки в год)

Модифицирование и фукционализация трековых мембран

PET Ion Track Membrane

- Трековые мембраны «заготовки»:
- шаблоны для нанопроводов
 (электроосаждение металлов, каталитическое осаждение)
- прекурсоры функциональных мембран (полимеризация функциональных мономеров в нанопорах)
- получение smart materials, («сенсорные» полимерные гели в порах трековых мембран)

Diameter: 200 nm Height: 12 µm

lon Track Membrane

Copper Wires

Медные нано- (вверху) и микро-(внизу) проволоки, сформированные в каналах трековых мембран (A.G. Chmielewski et al., Nucl. Instr. Meth. Phys. Res. B, 2007, **265**, 339; P.Yu. Apel et al., Nucl. Instr. Meth Phys. Res. B, 2003, **208**, 11)

Получение «нанонитей» при действии излучений с высокой ЛПЭ на карбосилановые полимеры

 Данные АСМ: кремний-углеродные «нанонити», полученные путем сверхплотного сшивания поликарбосилана и смеси поликарбосилан – поливинилсилан на границе треков высокоэнергетических тяжелых ионов (при ¹²⁹Хе²³⁺). После облучения несшитые полимеры удалены растворением

• (from S.Tsukuda et al., *J. Phys. Chem. B, 2004*, **108**, 3407)

О чем пойдет речь (Часть 3) Применение радиационно-химических процессов для создания и модифицирования материалов

- Общие принципы использования радиационнохимических процессов для технологий материалов
- Особенности радиационной химии макромолекул: радиационная чувствительность и радиационная стойкость
- Некоторые примеры технологий радиационного модифицирования полимерных материалов
- Формирование «вторичных» наноструктур и наноматериалов в радиационно-химических процессах
- Радиационно-химическая «сборка» наночастиц в растворах
- Проблемы и перспективы радитационнно-химических технологий функциональных наноматериалов

Общие физико-химические принципы: эффективность и селективность

 $M \xrightarrow{P_1}, P_2, \dots, P_n$

 $(P_1 - целевой продукт, остальные P_i - побочные)$ $G_0 = dC/dD; G_{eff} = \Delta C/D$

<u>Эффективность</u>: большие величины G(P₁)
<u>Селективность</u>: G(P₁) >> G(P_i) (i ≠ 1) (для полимеров может иметь не химический, а пространственный смысл)
G = 1 - 10 молек./100 эВ (10⁻⁷ - 10⁻⁶ моль/Дж) - для нецепных реакций;
G > 10 (часто >> 10 молек./ 100 эВ) возможны только для цепных химических реакций, инициируемых излучением
При G = 5 и D = 100 кГр макс. степень конверсии (доля измененных молекул) Низкомолекулярные соединения (M ~ 100) ~ 0.5%
Полимеры (M ~ 10⁵) ~ 50% («макромолекулярный эффект» в радиационной чувствительности)

Вывод: наиболее потенциально привлекательны технологии радиационнохимического модифицирования полимеров и технологии, основанные на цепных процессах (напр., полимеризации)

Специфика радиационной химии макромолекул

- Возможность образования делокализованных состояний («дырки», возбуждения) с последующей локализацией на структурных и химических дефектах
- Влияние микроструктурной неоднородности на перенос заряда и возбуждения (роль межфазных границ)
- Большая роль пострадиационных процессов; связь кинетики реакций активных частиц с релаксационным спектром
- Возможность значительных изменений структуры и свойств при «обычных» величинах G

Структурные последствия радиационнохимических процессов в полимерах

Н-сшивание (поперечное)

Деструкция

Ү-сшивание (концевое)

Основные методы определения сшивания и деструкции: Золь-гель- анализ Определение модуля упругости Импульсный ЯМР (прямой)

Радиационно-химические выходы сшивания G(X) и деструкции G(S)

Влияние сшивания и деструкции на свойства полимеров

Свойство	Сшивание	Деструкция
Растворимость	снижается	увеличивается
Модуль упругости	увеличивается	снижается
Электрофизические характеристики	улучшаются (стабилизируются)	ухудшаются
Теплостойкость	увеличивается	снижается
Газопроницаемость	снижается	увеличивается
Способность к биоразложению	снижается	увеличивается

Полимеры, сшивающиеся и деструктирующие при облучении (в вакууме)

Преимущественное сшивание	Преимущественная деструкция	Сшивание ~ деструкция
Полибутадиен	Полиизобутилен	Полипропилен
Сополимеры бутадиена	Политетрафторэтилен	
Полиэтиленоксид	Полиоксиметилен	
Полисилоксаны	Полиметилметакрилат	
Полиакриловая кислота	Целлюлоза	
Полиакрилаты	Поликарбонат	
Полистирол	Поливиниловый спирт	
Полиамиды	Полиэтилентерефталат	
Поливинилхлорид		

Радиационная чувствительность полимеров (условная оценка)

Понятие «радиационная стойкость» имеет строгий смысл только применительно к определенному свойству материала (механика, оптика, газовыделение...) Примерный список дан в порядке снижения чувствительности (увеличения «стойкости») сверху вниз

«Чувствительные»	«Стойкие»
Полиизобутилен	Полиамиды
Политетрафторэтилен	Полиэтилакрилат
Полиоксиметилен	Полиэфируретан
Полиметилметакрилат	Полиэтилентерефталат
Полипропилен	Полистирол
Целлюлоза	
Полиэтилен	
Полидиметилсилоксан	
Полиэтиленоксид	
Поливинилхлорид	
Поликарбонат	

Формирование вторичных радиационноиндуцированных наноструктур в полимерах

Вторичные радиационно-индуцированные наноструктуры могут возникать в результате рекомбинации макрорадикалов **«в объеме»** (*некоррелированные по образованию пары*), если образуется «сетка» с ячейками нанометрового размера

Основные практически важные случаи:

- плотное поверхностное сшивание для ИИ с высокой ЛПЭ и высокой интенсивностью («перекрывание треков» в поверхностном слое) → образование структур с высокой поверхностной микротвердостью
- локально неоднородное (селективное) сшивание дефектные области, границы доменов
- формирование гидрогелей различной топологии при сшивании макромолекул в растворах

Получение микрогелей и наногелей радиационно-химическим способом

Межмолекулярное сшивание (высокие концентрации полимера, низкие мощности дозы)

Гомогенная кинетика рекомбинации:

 $1/C(t) - 1/C_0 = kt$

- <u>Макрогели:</u> ("wall-to-wall") полностью нерастворимые образцы (образуются при D > D_g, D_g – *доза гелеобразования*, в среднем 1 сшивка на макромолекулу)
- <u>Микрогели:</u> при D < D_g
- Внутримолекулярное сшивание (низкие концентрации полимера, высокие мощности дозы) → наногели

Негомогенная кинетика [формализм k(t)]:

 $k(t) = Bt^{\alpha-1}$ (A.Plonka, 1991)

 $1/C(t) - 1/C_0 = Bt^{\alpha}/\alpha$

Преимущества: безреагентный метод

Импульсный радиолиз растворов акриловой ксислоты: изменение кинетического режима (P. Ulanski et al., *Radiat. Phys. Chem.*, 2002, **63**, 533)

(особенно важно для медицинских целей) хема образования наногелей при высокой мощности дозы (from A.G. Chmielewski et al., *Nucl. Instr. Meth. Phys. Res. B*, 2007, **265**, 339)

Применение радиационно-сшитых гелей

- Функциональные материалы с иммобилизованными активными компонентами
- Биосовместимые материалы
- Системы доставки лекарств
- Мембранные материалы
- Сорбенты

H₂O → 'OH, 'H, е_{аq} (генерация активных частиц в воде при облучении)

-CH₂-CH₂-O- + 'OH → -CH₂-'CH-O- + H₂O (генерация макрорадикалов)

2 –СH₂ - ̀CH-O- → -CH₂-CH-O-| -CH₂-CH-O-(сшивание – формирования геля)

КЭ+ 'OH \rightarrow 'KЭ + H₂O (незначительно)

Схема получения функционального гидрогеля, содержащего физически иммобилизованный краун-эфир для селективной сорбции ионов стронция

(Zakurdaeva et al., J. Radioanal. Nucl. Chem., 2004, 261, 245)

Радиационно-химическая сборка наноструктур в растворах: химия без реагентов ?

- Восстановление ионов металлов -> формирование металлических наночастиц
- Окислительные процессы, формирующие кластеры и наночастицы
- Преимущества:
- генерация эффективных восстановителей и окислителей (ионы, радикалы) в объеме раствора
- чистота материала
- контроль: возможность «on/off switching»
- возможность контроля размера, формы и распределения путем настройки «параметров» процесса

Механизм радиолиза воды

 $H_{2}O \xrightarrow{} H_{2}O \xrightarrow{} H_{2}O \xrightarrow{} H_{2}O \xrightarrow{} H_{2}O \xrightarrow{} e^{-}$ <u>«Сверхбыстрые» реакции (процессы в субпикосекундном диапазоне)</u> $H_2O^{+} + H_2O \rightarrow H_3O^{+} + OH^{-} (T \sim 10^{-13}c)$ $e^{-} \rightarrow e^{-}_{aq} (\tau \sim 10^{-12} c)$ $H_2O^* \rightarrow H + OH'(?)$ «Начальные» радиационно-химические выходы, частиц /100 эВ (~ 10⁻¹² с): $G(e_{ad}) \sim 4.8; G(OH) \sim 5.6; G(H) \sim 0.6$ <u>Реакции в «шпорах» (т ~ 10⁻¹² – 10⁻⁷с) :</u> $[OH' + OH'] \rightarrow H_2O_2$ $[H_3O^+ + e_{ad}^-] \rightarrow H^+ + H_2O$ $[H' + H'] \rightarrow H_2$ $[e_{aq}^{-} + OH^{-}] \rightarrow OH^{-}$ $[e_{aq} + e_{aq}] \rightarrow H_2 + 2OH^2$ Радиационно-химические выходы по завершении реакций в «шпорах» (~ $10^{-7}c$) : <u>G(e⁻ac)</u> = 2.8; <u>G(OH)</u> = 2.9; <u>G(H</u>₂O₂) = 0.75; <u>G(H)</u> = 0.6; <u>G(H</u>₂) = 0.45 <u>Дополнительные реакции в «объеме» (т > 10⁻⁷с):</u> $H^{-} + OH^{-} \rightarrow H_2O; \quad H_3O^{+} + OH^{-} \rightarrow 2 H_2O; \quad e_{aq}^{-} + H_2O_2 \rightarrow OH^{-} + OH^{-};$ $H' + H_2O_2 \rightarrow HO_2 + H_2; HO_2 + HO_2 \rightarrow H_2O_2 + O_2$

Радиационно-химическое восстановление ионов металлов в водных растворах

 е⁻_{аq} – уникальный химический реагент, чистый и очень эффективный восстановитель (Е⁰ = -2.87 В)

•
$$e_{aq}^{-} + M^{n+} \rightarrow M^{(n-1)+}$$
 (k $\geq k_{diff}$)
 $e_{aq}^{-} + Cu_{aq}^{2+} \rightarrow Cu_{aq}^{+}$ (k = 3.5 ·10¹⁰ M⁻¹c⁻¹)
 $\partial_{\pi\pi}$ различных комплексов k = (0.5 - 4.0) ·10¹⁰ M⁻¹c⁻¹
 $e_{aq}^{-} + Ni_{aq}^{2+} \rightarrow Ni_{aq}^{+}$ (k = 1.9 ·10¹⁰ M⁻¹c⁻¹)
 $e_{aq}^{-} + Ag_{aq}^{-} \rightarrow Ag^{0}$ (k = 4.0 ·10¹⁰ M⁻¹c⁻¹)
 $e_{aq}^{-} + Cu_{aq}^{+} \rightarrow Cu^{0}$
Радикал ОН⁻ – сильный окислитель (E⁰ = 2.3 – 2.7 В, при разл. pH)
ОН⁻ + M⁽ⁿ⁻¹⁾⁺ $\rightarrow M^{n+}$ (k ~ k_{diff})

<u>Превращение окислителя в восстановитель</u> OH[·] + C₂H₅OH → CH₃[·]CHOH + H₂O (k = 1.6·10⁹ M⁻¹c⁻¹) OH[·] + HCOO⁻ → CO₂^{-·} (k = 3.1·10⁹ M⁻¹c⁻¹)

 $Cu^{2+}_{aq} + CH_{3} CHOH \rightarrow CH_{3}CHO + H^{+}_{aq} + Cu^{+}_{aq}$

Формирование кластеров и наночастиц при радиационно-химическом восстановлении ионов металлов в водных растворах

J. Belloni (Orsay), Б.Г. Ершов (ИФХЭ), Т. Mukherjee (BARC):
 e⁻_{aq} + Mⁿ⁺ → M⁽ⁿ⁻¹⁾⁺ →M_k^{r+} (r<k) ... → наночастицы
 Использование e⁻_{aq} в качестве восстановителя позволяет реализовать гомогенное восстановление ионов до нейтральных атомов в растворе (большие отрицательне потенциалы), например:

 $e_{aq}^{-} + Cu_{aq}^{+} \rightarrow Cu_{at}^{0}$ (<u>*OUEHKA*</u>: $E^{0} = -2.73B$)

Для кластеров E^0 с ростом n становится менее отрицательным в пределе $\rightarrow E^0 (M^+_{aq}/M^0_{solid})$

 $R + M_k \stackrel{r_+}{\rightarrow} M^{(r-1)+} + R^+$

Проблемы:

Необходимость стабилизации наночастиц (полиэлектролиты, напр., полифосфаты, полиакриловая кислота) Формирование пленки («сухой остаток») Ограничение разбавленными растворами Наличие индукционного периода

Интерполиэлектролитные комплексы – «контейнеры» для ионов металлов

Катион	Cu ²⁺	Ni ²⁺	Co ²⁺	Fe ²⁺	Ag+	Pd ²⁺
С _{тах} , масс.%	27	20	20	6	22	3

<u>Условия</u>: облучение набухших пленок комплексов различного состава в водно-спиртовой (10% этанола) среде в аргоновой атмосфере гамма-, рентгеновским или электронным излучением Потенциальные области применения нанокомпозитов: катализ, оптические материалы, сенсоры, магнитные

материалы

Образование наночастиц при радиационнохимическом восстановлении ионов в тройных комплексах (гамма-облучение): данные ПЭМ

- Наночастицы меди (слева) и никеля (справа) в облученных пленках интерполиэлектролитных комплексов (данные ПЭМ)
- Радиационно-химическое восстановление (в отличие от химического) дает наночастицы с размером 2 – 5 нм и достаточно узким распределением по размеру
- (A.A. Zezin et al., *Nucl. Instr. Meth. Phys. Res. B*, 2007, **265**, 334)

X-ray irradiation: a heavy atom effect

 <u>X-ray irradiation (E ~ 20 - 40 keV)</u>: basic mechanism – phoelectric absorption (photoeffect) – removal of a "strongly bound electron"

$$\boldsymbol{E}_{\mathrm{e}} = \boldsymbol{E}_{p} - \boldsymbol{E}_{l}$$

 $(E_b - \text{energy of electron binding in the medium atoms})$ For $E_p > E_K(E_K - \text{the energy of K-edge})$ main interaction with K-

electrons (
$$E_b \sim E_K$$
)

Atomic cross section

- Mass absorption coefficient (proportional to absorbed dose) $\mu/\rho \sim Z^3$
- Mostly photoelectrons with relatively low energy (below 10 keV) are produced from heavy elements

...Plus resonance absorption at $E_p \sim E_K$; interaction with L-electrons at $E_p < E_K$ (significant for Z > 40) Meaning for radiation chemistry ?

Selected mass absorption coefficients (cm²/g)

E _p , keV	C (Z=6) E _k < 1keV	N (Z=7) E _k < 1 keV	O (Z=8) E _k < 1 keV	Cu (Z=29) E _k = 9 keV	Ag (Z= 47) E _k = 25.5 keV
30	0.066	0.10	0.17	9.3	16.6
20	0.22	0.39	0.62	28	16.9
15	0.56	0.97	1.55	58	38
10	2.08	3.5	5.6	148	115

Light blue – major interaction with K-electrons, yellow – major interaction with L-electrons

(taken from:Hubbel, J. H.; Settler, S. M. Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest; http://www.nist.gov/pml/data/xraycoef. 1996)

Microdosimetry: pathlength of keV electrons

 $\begin{array}{l} E_e = 1 \; \mathrm{keV} \rightarrow L_e = 50 \; \mathrm{nm} \\ E_e = 2 \; \mathrm{keV} \rightarrow L_e = 150 \; \mathrm{nm} \\ E_e = 5 \; \mathrm{keV} \rightarrow L_e = 700 \; \mathrm{nm} \\ E_e = 10 \; \mathrm{keV} \rightarrow L_e = 2 \; \mathrm{\mu m} \end{array}$

Expected consequence: local dose rate enhancement at nano- and micro-scale due to the heavy atom effect

Distance corresponding to 90% absorption of the initial electron kinetic energy in water

(taken from: Stewart, R. D.; Wilson, W. E.; McDonald, J. C.; Strom, D. J. Phys. Med. Biol. 2002, 47, 79-88).

Braking radiation (Bremsstrahlung): the action spectrum and spectral selectivity

Light elements (C,N,O):

only K-absorption, low efficiency, $E_e > 10 \text{ keV}$

<u>Cu:</u>

mainly K-absorption, high efficiency, $E_e \sim 1 - 10 \text{ keV}$

<u>Ag:</u>

both K and L-absorption, high efficiency, bimodal distribution of E_e

Energy spectrum of braking radiation produced by an X-ray tube with tungsten anode at U = 30 kV ($E_0 = 30$ keV)

Comparison of the nanostructure pattern: evidence for nanoscale local effects

<u>Gamma-irradiation:</u> uniformly distributed small copper nanoparticles (2 – 4 nm)

(A.A. Zezin et. al. Nucl. Instr. Meth. Phys. Res. B, 2007,265, 334)

X-irradiation: large copper nanoparticles mainly in the surface layer

(V.I. Feldman et al., J.Phys.Chem.C, 2013, 117, 7286)

It is NOT the effect of macroscopic penetration depth: half-attenuation length for 20-keV X-rays is ca. <u>1cm</u> in water and polymers (<u>incomparable with film thickness</u>)

Estimation of scale: the action spectrum and photoelectron distribution

$$\tau_a \approx k Z^4 / E_p^3 \ (E_e > E_k) \qquad E_e \approx E_p - E_K$$

Intensity distribution for incident photons:

•
$$Y(E_p) = C(E_0 - E_p)E_p^2$$

• **Probability of absorption at E = E_p**:

• $P(E_p) = B(E_0 - E_p)/E_p$

$$N(E_0) = \int_{E_K}^{E_0} P(E_p) dE_p = B(E_0 \ln \frac{E_0}{E_K} - E_0 + E_K)$$

<u>Contribution from photons with E_p < E'</u>

$$\frac{N(E')}{N(E_0)} = \frac{E_0 \ln \frac{E'}{E_k} - E' + E_K}{E_0 \ln \frac{E_0}{E_k} - E_0 + E_K}$$

range of $E_p = 9 - 20 \text{ keV} \rightarrow$

Photoelectrons with $E_e = 0 - 10 \text{ keV}$ (an average $L_e \sim 700 \text{ nm}$)

Estimation of scale: comparison with experiment

45 min

90 min

Film evolution with increasing time of X-ray irradiation: formation of small nanoparticles \rightarrow surface filling with larger nanoparticles \rightarrow etching Etching depth ~ 700 nm (close to L_e)

The nature of clouds: K-electrons cannot be neglected !

Progressive formation of *clouds* from secondary nanoparticles upon irradiation of Ag –PAA-PEI system

Радиационная химия и технологии наноматериалов: проблемы и перспективы

- На пороге коммерциализации:
- материалы для основе трековых мембран различного назначения
- радиационно-сшитые полимерные гидрогели для медицинских приложений
- Технологические перспективы:
- сорбенты
- функциональные мембраны с радиационно-химической прививкой
- металл-полимерные нанокомпозиты
- Направления поиска:
- фиксация разнообразных трековых структур
- радиационно-химические аспекты нанолитографии с использованием экстремального ВУФ, рентгеновского и электронного излучения
- селективные и дальнодействующие эффекты в радиационной химии организованных систем («наноскальпель»)