Как в прошедшем семестре было растревожено плавное течение общего потока

По материалам http://www.elch.chem.msu.ru/rus/prg4.htm

5.10	.2010			4	
ппа	Инициаль фамилия		/ / /	1/1 1/	
8	N.C. KXharum.		/ // //		1//

У Произведение растворимости ВаSO₄ составляет 1·10⁻¹⁰. Определить его растворимость в воде и в 0.05 М растворе КСІ при температуре 25°С. Считать иоиные радиусы К⁺ и С равными 1.38 и 1.81 Å соответстевнно. Принять диэлектрическую постоянную равной 78.4.

2 Сосуд для измерения электропроводности наполнея 0.00% М раствором СиSO при температуре 25°С. Площами парамлельных электродом 3 см², расстояние мужду электролами - 6 см. Согротивления слоя раствора, заключения между электродами, равно № 61 кОм. Найченый между электродами, эквивалентную и предельную эквивалентную электропроводности раствора. Принять для ктры скую постоянную равной 7.4, вязкость равной 8.937-10-4 ГІз.

- 3. Электринеская подвижность иона [(С.Н₉)₄N]⁺ в метилацетате при температуре 25°C равна 6.37 10⁻⁸ м²/В с Выпислить предстаную эквивалентную электропроводность, коэффициент диффетил при бесконечном разбавлении в диметилсульфоксиле. Вязкости затринетата и диметилсульфоксида 3 в 30⁻³ и 19 0 10 113 соответственно.
- 4. Рассчитать изменение ри раствора 0.005 M CH₃COOH + 0.01 M CH₃COONa + 0.03 M NaCl при пропускании через всто газообразного HCl до достижения соищентрации HCl, равной 7·10⁻³ M. На сколько мВ в результате добавления HCl именится потенциал водородного электрода в исследуемом растворе? Измять при 13° C рК(CH₃COOH) равным 4.75, диэлектрическую постояния развной 84.

В трех частях:

- жидкости и растворы из года в год, из курса в курс (о тяжелых судьбах Дебая и Хюккеля) **КР1**
- от брома и марганцовки к извращению понятия равновесия (три пина эпоктрохиминоской тормолицомики)
- (три лица электрохимической термодинамики) **КР2**
- секретные разделы учебного плана (где зарыта кинетика электродных процессов) – **КР3**

С прологом и эпилогом, без антракта

II курс, осенний семестр

<u>І коллоквиум.</u> Равновесие в гомогенных системах. Кислотно-основное равновесие. Кислотно-основное титрование.

Константы равновесия реакций и процессов. Ионное состояние вещества в идеальных и реальных системах. Структура растворителей и раствора. Сольватация, ионизация, диссоциация. Поведение электролитов и неэлектролитов в растворах. Теория Дебая-Хюккеля. Термодинамическая константа равновесия. Активность и коэффициент активности. Концентрационные константы. Общая и равновесная концентрации. Условные константы.

VI курс, осенний семестр

4. Теория растворов электролитов. Электропроводность. Диффузия Основные положения теории Аррениуса. Закон разведения Оствальда. Ион-дипольное взаимодействие в растворах электролитов. Энергии кристаллической решетки и сольватации ионов. Уравнения Борна и Борна — Бьеррума. Ион-ионное взаимодействие в растворах электролитов. Теория Дебая - Хюккеля: понятие ионной атмосферы, вывод формулы для потенциала ионной атмосферы в растворе 1,1-валентного электролита, ограничения теории Дебая - Хюккеля. Первое и второе приближения теории Дебая - Хюккеля для расчета коэффициентов активности. Связь среднего коэффициента активности с коэффициентами активности отдельных ионов. Современные представления о теории растворов сильных электролитов.

1.Произведение растворимости AgCl составляет $\Pi P = 1.8 \cdot 10^{-10}$. Определить его растворимость S в воде и в 0.05 M растворе KF при температуре 25°C. Считать ионные радиусы K+ и F- равными $r_+ = 1.38$ и $r_- = 1.33$ Å соответственно. Принять диэлектрическую постоянную равной $\epsilon = 78.4$.

$$\Pi P = [Ag+] [Cl-] f_{\pm}^2$$
 или $\Pi P = [Ag+] [Cl-] f_{+}^{\dagger} f_{-}^{\dagger}$

1. В воде $f_+ \to 1$ S(AgCI) = $\Pi P^{0,5}$

Основная ошибка: забыли посчитать

2. В растворе соли нужен расчет коэффициентов активности (по Дебаю-Хюккелю):

$$\lg f_{\pm}^{(N)} = - |z_{+}z_{-}| h \sqrt{J} \, .$$

первое приближение $c \le 0.01$ моль/л

или $\lg f_{\pm}^{(N)} = -\frac{|z_+ z_-| h \sqrt{J}}{1 + \sqrt{J}}$

$$\lg f_{\pm}^{(N)} = -\frac{|z_+ z_-| h \sqrt{J}}{1 + \varkappa \alpha} = -\frac{|z_+ z_-| h \sqrt{J}}{1 + aB\sqrt{J}},$$

второе приближение $c \le 0.1 \text{ моль/л}$

Основные ошибки:

- •использование неприменимого приближения
- •использование приближенной формулы без обоснования

$$\lg f_{\pm}^{(N)} = -\frac{|z_+ z_-| h \sqrt{J}}{1 + \varkappa \alpha} = -\frac{|z_+ z_-| h \sqrt{J}}{1 + aB\sqrt{J}},$$

- •z₊, z₋ =1 для AgCl,
- z₊, z₋ =2 для BaSO₄, PbSO₄
- • $a = r_{+} + r_{-}$ HO HE $\frac{1}{2}(r_{+} + r_{-})$
- •При расчете индивидуальных коэффициентов активности:

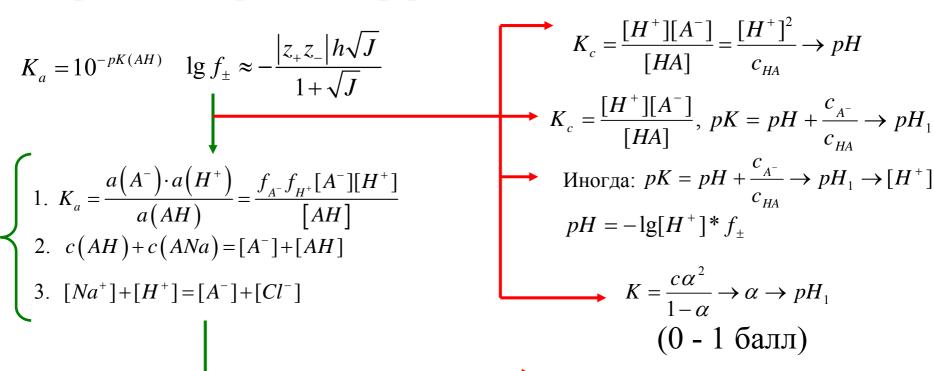
$$a = r_+ + r_-$$

3. Расчет растворимости: $\Pi P = [Ag+] [Cl-] f_{\pm}^2$ или $\Pi P = [Ag+] [Cl-] f_{+} f_{-}$

Основная ошибка: не учтен квадрат в показатели степени у коэффициента активности:

$$\Pi P = [Ag+] [CI-] f_{\pm}$$

Вариант 1: не учтён эффект общего иона

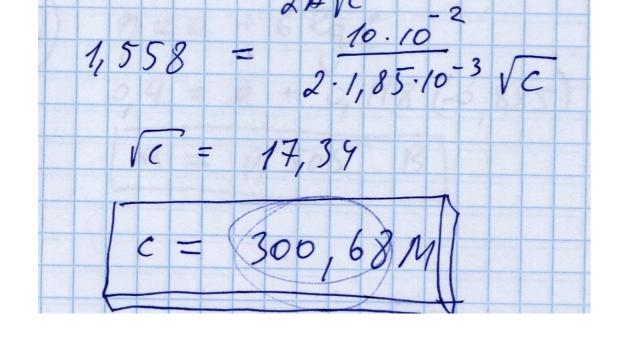

Произведение растворимости AgCl составляет составляет $\Pi P = 1.8 \cdot 10^{-10}$. Определить его растворимость (S) в воде и в 0.05 M растворе KCl при температуре 25°C. Считать ионные радиусы K+ и Cl- равными $r_{+} = 1.38$ и $r_{-} = 1.81$ Å соответственно. Принять диэлектрическую постоянную равной $\epsilon = 78.4$. $\Pi P = [Ag^{+}] [Cl^{-}] f_{-+}^{2} = S^{*}(S+0.05)^{*} f_{-+}^{2}$

Задача 4

p-p 1: HA + ANa + NaCl; p-p 2: HA + ANa + NaCl + HCl

Правильное решение (р-р 1)

Типичные ошибки


$$K_{a} = \frac{f_{\pm}^{2}[H^{+}]([H^{+}] + [Na^{+}] - [Cl^{-}])}{c(AH) + c(ANa) - ([Na^{+}] + [H^{+}] - [Cl^{-}])}$$

$$\to pH_{1}$$

$$K = \frac{[H^+]([H^+] + [Na^+] - [Cl^-])}{c(AH) + c(ANa) - ([Na^+] + [H^+] - [Cl^-])}$$

$$\to pH_1 \qquad (2 \text{ балла})$$

нет учета коэффициентов активности!

Без комментариев

Florarano, Tro B Froit zagare ecto Multrue garrere: paqueter norrol u quentificiz nocrostriani.

Dros reacting p-pa: [Ag+I [Cl] = TP(Agll) | > Crae(Agll) = TP(Agll) = [1,34.105]

Basing Agll b Ill repercoperation => Cros(Agll) = (hall) = 1,34.105 << C(Kill)

Basing Agll b Ill repercoperation => Cros(Agll) = (hall) = 1,34.105 << C(Kill)

En (Agll) xee = [Ag+I = TP(Agll) = TP(Agll) = 1,8.1010 = 3,6.109

Cill page (N)

II курс, осенний семестр

<u>II коллоквиум.</u> Равновесия реакций комплексообразования и окислениявосстановления. Комплексонометрическое и окислительно-восстановительное титрование.

Электродный потенциал. Уравнение Нернста. Стандартный и формальный потенциалы. Влияние электростатических и химических взаимодействий на потенциал: ионной силы, pH, образования комплексных и малорастворимых соединений. Константы равновесия и направление окислительновосстановительного процесса. Факторы, влияющие на направление окислительно-восстановительных реакций. Понятие о смешанном потенциале. Механизмы окислительно-восстановительных реакций. Основные окислители и восстановители, применяемые в анализе.

VI курс, осенний семестр

5. ЭДС и термодинамика электрохимических цепей

Разности потенциалов в электрохимических системах: понятия внешнего, внутреннего и поверхностных потенциалов; разности потенциалов Вольта и Гальвани; потенциал нулевого заряда и методы его определения.

Электрохимический потенциал. Условия равновесия на границе электрода с раствором и в электрохимической цепи. Уравнение Нернста.

Относительные и стандартные электродные потенциалы. Расчет ЭДС с помощью таблиц стандартных потенциалов.

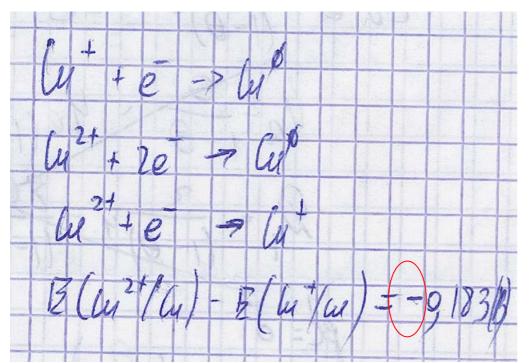
Классификация электродов и электрохимических цепей: электроды 1-го, 2-го и 3-го рода; окислительно-восстановительные и ион-селективные электроды; физические, химические и концентрационные цепи.

«Психологические барьеры» при решении совсем простых задач

Стандартные потенциалы редокс-систем Cu/Cu⁺ и Cu/Cu²⁺ составляют при температуре 298 К 0.520 и 0.337 В (с.в.э.) соответственно. Определите стандартный потенциал редокс-системы Cu²⁺/Cu⁺.

Первый барьер: что справа, а что слева? Влияет ли это на знак?

$$\rightarrow$$
 E_{Cu/Cu+} = 0.520 B \longrightarrow E_{Cu+/Cu} = -0.520 B

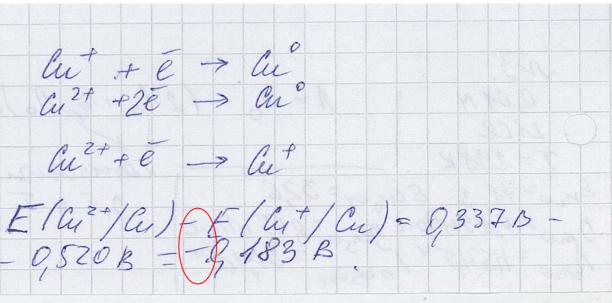

Сведения о том, что от знака свободной энергии реакции зависит «направление реакции», обычно хорошо усваиваются.

Сведения о том, что в равновесии скорости прямой и обратной реакций равны, не были своевременно получены или забылись.

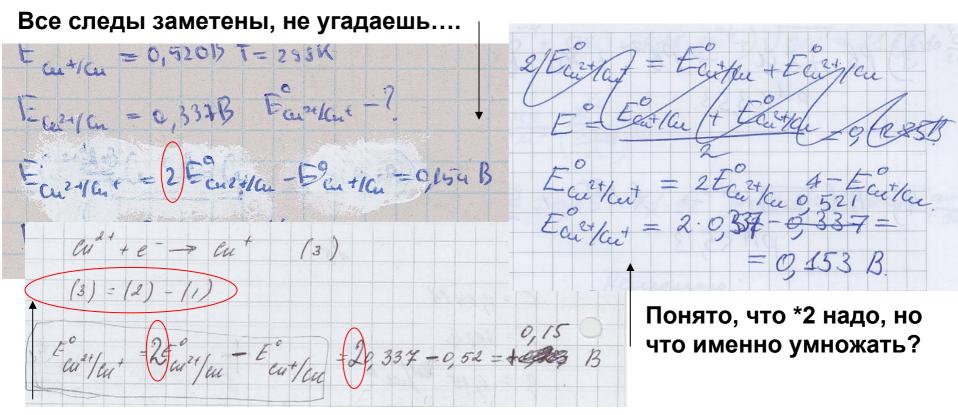
Величины (ряды) стандартных потенциалов обсуждались не в связи с электродным равновесием, а в связи с протеканием тех или иных процессов (в отсутствие равновесия).

Вводилось мнемоническое правило «окисленная форма слева».

Второй барьер: сколько участников в этом равновесии? Два? А электрон(ы)?



Ни у кого нет сомнений, что во втором равновесии участвуют два электрона.


Но это почему-то никак не отражается в последующем расчете....

Далее два пути:

- правило Лютера взять из учебника (или у соседа по парте);
- ничего не слыхав о Лютере, вывести это правило.

Варианты движения по первому пути – диагностика причин непонимания

В финале решения есть *2, а на промежуточном этапе все неизменно.

Нужны контрольные ситуации, например TI – TI+ - TI3+

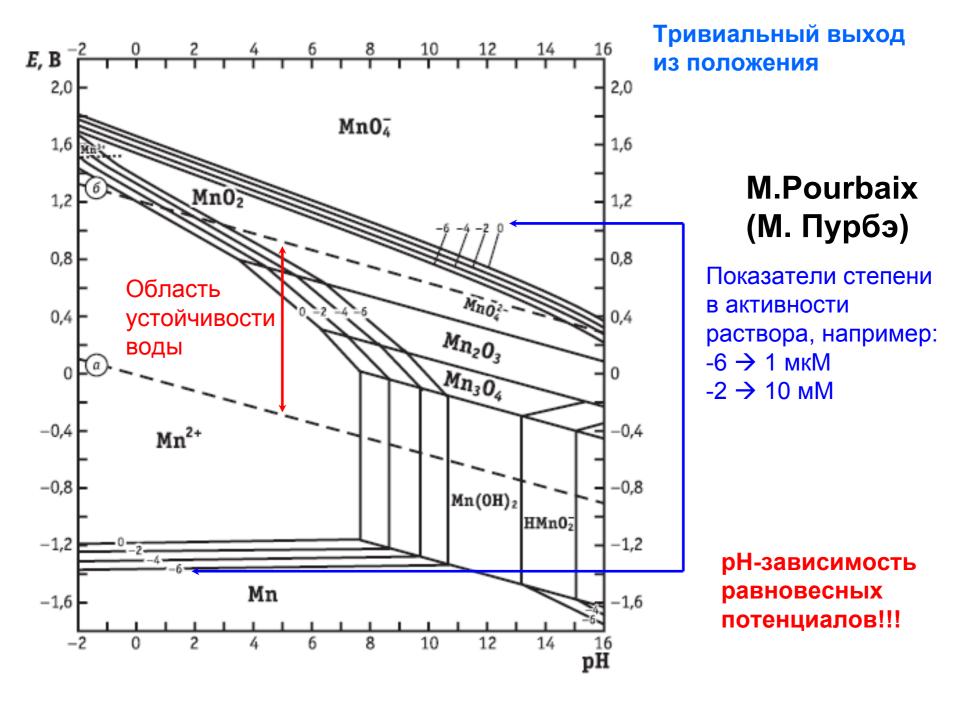
Можно поразглядывать справочные данные.....

Например, очень помогают «области существования» на диаграммах Пурбэ (в конце III тома Справочника химика под ред. Никольского), но сначала – корректное решение:

i)
$$Cu^{2+} + 2e^{-} = Cu$$
. $-\Delta G_{i}^{o} = 2F = \frac{e^{\alpha v}}{cu}$.
 $Cu^{2+} + e^{-} = Cu^{+} - \Delta G_{i}^{o} = F = \frac{e^{\alpha v}}{cu}$.
 $Cu^{+} + e^{-} = Cu$. $-\Delta G_{3}^{o} = F = \frac{e^{\alpha v}}{cu}$.
B pabrobeenue $\Delta G_{i}^{o} = \Delta G_{2}^{o} + \Delta G_{3}^{o}$.
morga. $\Delta E_{cu}^{o} / cu = \frac{E^{o}}{cu^{2}} / cu^{+} + \frac{E^{o}}{cu} / cu$
 $E_{cu^{2+}} / cu^{+} = 2 \cdot 0,337 - 0,521 = 0,1538$.

В этом случае для проверки на прочность приходится увеличивать число участников в равновесии!

Тяжелые последствия обучения учету зависимости от рН


Teperumaen E c yieman pH;

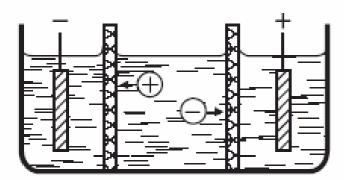
$$E = E^{\circ} + \frac{9.059}{2} lg [u+]^2 = E^{\circ} + \frac{9.059}{2} pH = -0,764+0,133 = -0,631B$$

 Cu : $E = E^{\circ} + \frac{9.059}{2} lg [u+]^2 = E^{\circ} + \frac{9.059}{2} pH = \frac{9.345}{2} + 0,135 = 0,478B$

$$E_{a^{2+}/c_{m}} = E^{\circ} - \frac{0.059}{2} PM = 9.345 - 2.0,13275 = 0$$

$$E_{a^{2+}/c_{m}} + 2e^{-\frac{1}{2}} f_{m}$$

$$E_{a^{2+}/c_{m}} = -0.464 - 0.059 \cdot 4.5 = -2978 - 1.038$$



Анион, катион - анод, катод

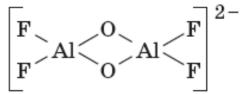
Методические рекомендации учителю: В учебнике используется определение электродов, принятое в электрохимии: катодом называют электрод, на котором происходит восстановление, а анодом — электрод, на котором происходит окисление. ОК Поэтому в гальваническом элементе катод положителен, а в электролизере имеет отрицательный знак Ой! . При работе со слабо подготовленными учащимися названия электродов в гальваническом элементе произносить не следует, а катод и анод называть только в электролизе исходя из заряда ионов (катионы — положительно заряжены, движутся к отрицательному электроду — катоду) О-о-ой!!!.

Ой! – знак может иметь величина: тока, заряда иона, заряда поверхности, а также потенциала электрода (но про это отдельный разговор!)

О-о-ой!!! – определение катионов и анионов не связано ни с какими электродами, это просто история названий

Знак ТОКА определяет направление миграции ионов — **это неравновесная ситуация**.

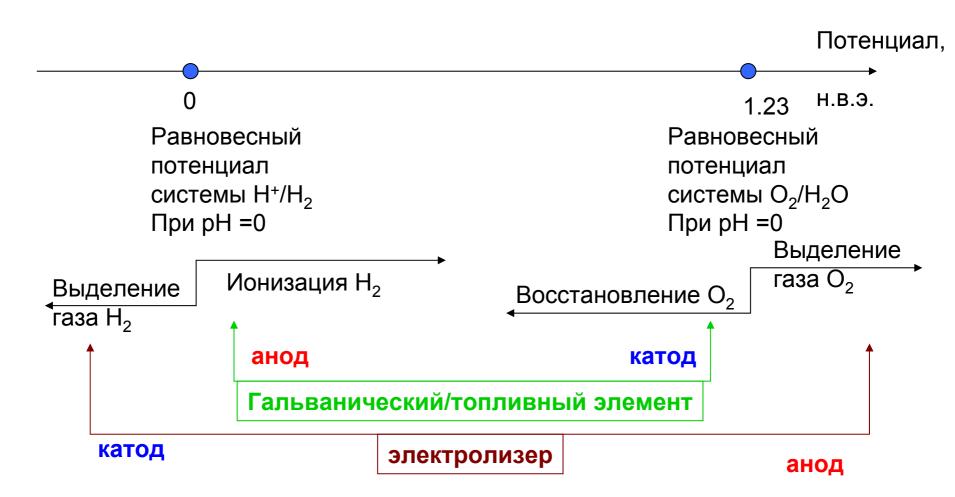
Прямолинейное (массовое!) рассуждение: анион не движется к катоду, значит он не может восстанавливаться – не правда!!!


Анион МОЖЕТ восстанавливаться на катоде!!! – металлы во многих индустриальных процессах выделяются на катоде именно из анионов!

Цианидные электролиты золочения: [Au(CN)₄]⁻

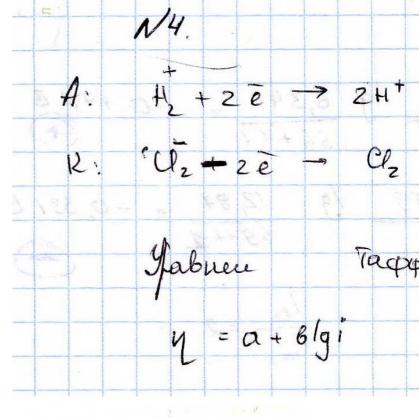
1. Отрицательный (катодный) ток не обязательно отвечает отрицательному заряду поверхности *q* (почему – можно обсудить отдельно после лекции).

Получение алюминия из расплава $Na_3AIF_3 + AI_2O_3$:

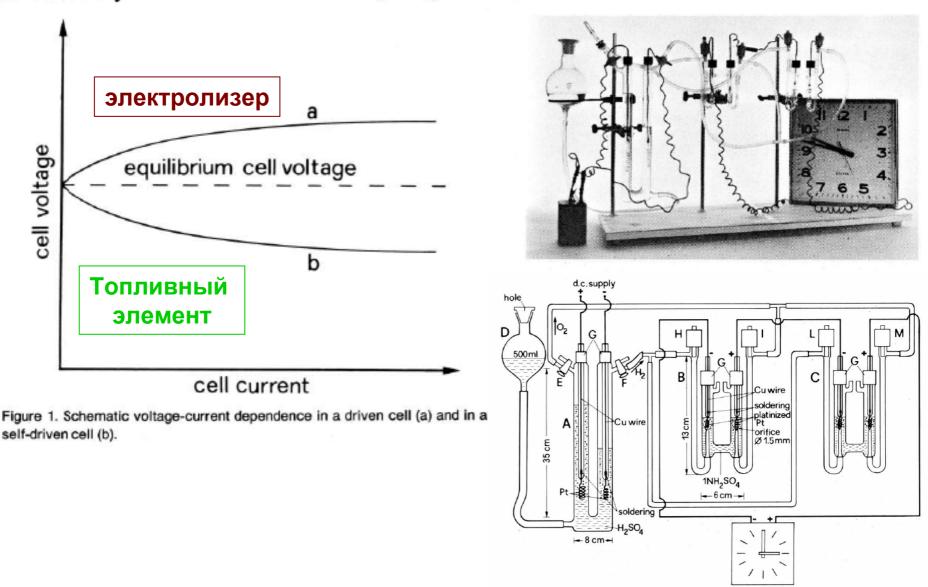


2. Даже при q < 0 около поверхности концентрация ионов с зарядом того же знака не равна нулю! – и этого часто достаточно для высокой скорости реакции.

В равновесии q < 0


Поэтому бессмысленно определять положительный и отрицательный электроды по знаку потенциала — знак зависит от системы сравнения!!!!

Знак ТОКА всегда одинаковый: - на катоде, + на аноде


Знак ПОТЕНЦИАЛА какой угодно, в зависимости от системы сравнения, а различие только в том, чей потенциал больше (анода в электролизере, катода в гальваническом элементе).

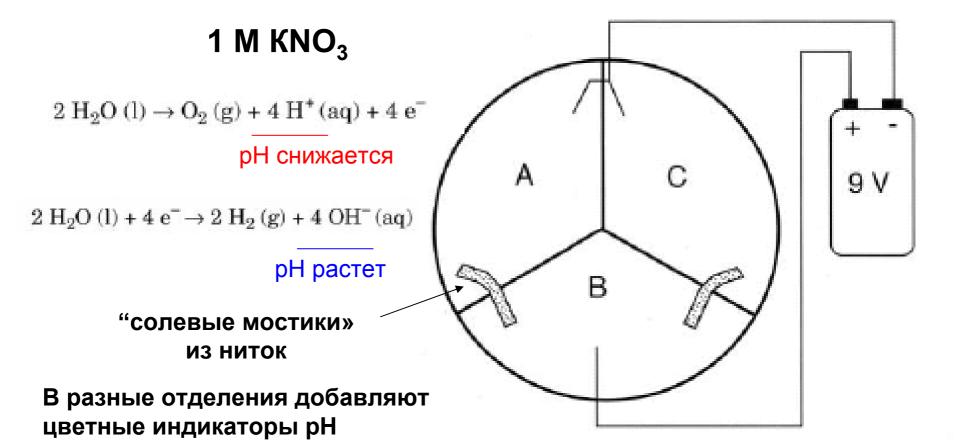
127 C2+2=-,2Cl-2H+2=-> 1/2 C-) Pt, 1/2 H+1 Wace

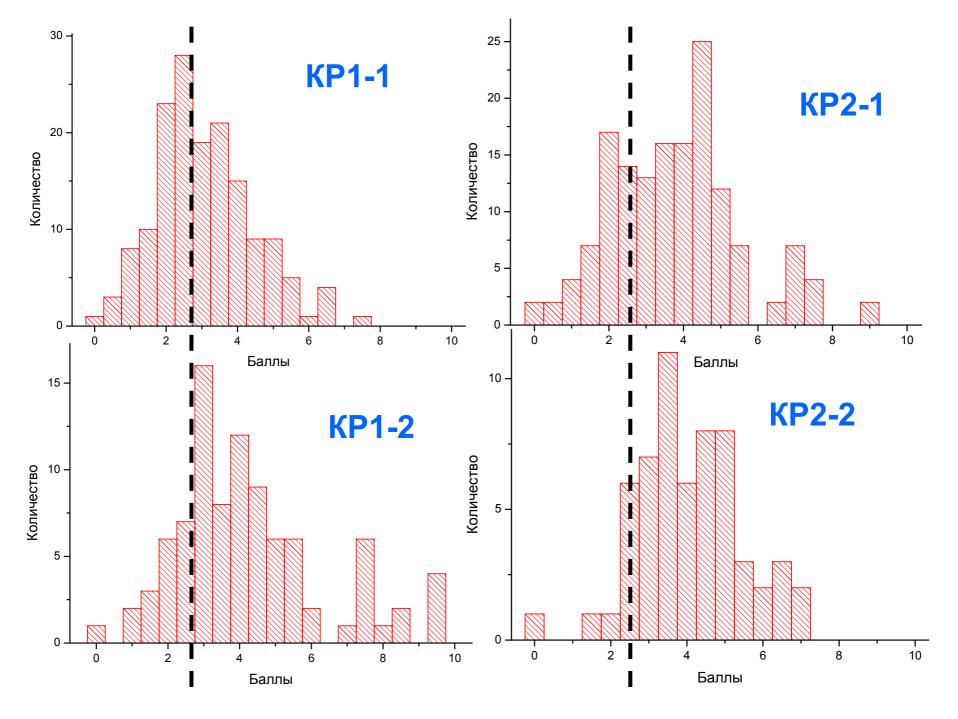
The Interconversion of Electrical and Chemical Energy

The Electrolysis of Water and the Hydrogen-Oxygen Fuel Cell

Journal of Chemical Education

Volume 65


Number 3


March 1988


overhead projector demonstrations Volume 64 Number 2 February 1987

J. Chemical Education

Patriotic Electrolysis of Water

Вопрос с мехмата – это по физике или по химии?

Электролиз.Закон Фарадея.Решение задачи

Список форумов Научный форум -> Физика

Предыдущая тема :: Следующая

Сообщение Approp

Partie

В Добавлено: Вс Фев 05, 2006 22:51:23 Заголовок сообщеннот: Электролиз. Закон Фарадея. Решение задачи

Зарегистрирован: 05.02.2008

Сообщения: 4

Опредилите электрохнымический эквивалент свинца "если за 5 часов электролиза при силе тока в

5А на ктоде выделилось 96.66г серебра (К=1.118 * 10 в - 6 степени кг

Вернуться к началу

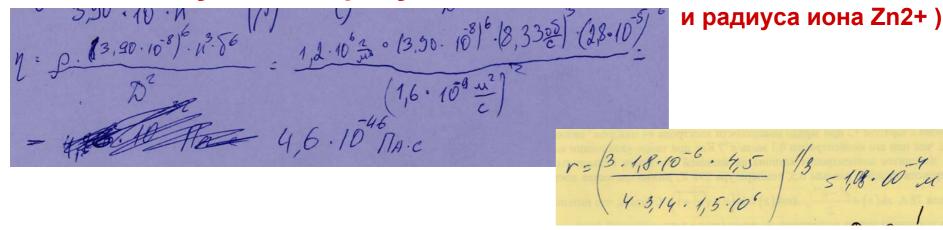
Dan Te Супермодератор В Добавлено: Вс Фев 05, 2006 23:47:34 Заголовок сообщеннот:

Это по физике вообще задача или по химии? 👺

Вариант проведения экспериментальной задачи по электролизу – определение заряда электрона

Determination of the Fundamental Electronic Charge via the Electrolysis of Water

$$2e^- + 2H_2O(\ell) \rightarrow H_2(g) + 2OH^-(aq)$$
 Reduction $2H_2O(\ell) \rightarrow O_2(g) + 4H^+(aq) + 4e^-$ Oxidation $2H_2O(\ell) \rightarrow 2H_2(g) + O_2(g)$ Net reaction


Data and Results

The following data were obtained in our classroom.

	Trial 1	Trial 2	Trial 3	Trial 4
Current/mA	25	25	25	25
Time/s	1200	1200	1800	1800
Volume/mL	3.9	3.8	5.7	5.6
Temperature/°C	21.5	22.0	20.5	22.0
Hydrogen pressure/kPa (calculated from eq 5)	100.5	101.4	100.8	100.5
Electronic charge/10 ⁻¹⁹ C (calculated from eq 4)	1.6	1.6	1.6	1.6

$$P_{\rm H} + P_{\rm water} = \rho g h + P_{\rm atm}$$

 $e^- = (itRT)/(2NPV)$

Новизна полученных результатов (на примере вязкости воды

Сравнение с мировым уровнем

WWW.PHDCOMICS.COM

В организации и проведении контрольных работ участвовали

М.И.Борзенко, С.Ю.Васильев, А.Н.Гаврилов, П.А.Загребин, Е.К.Лаврентьева, В.К.Лауринавичюте, Э.Е. Левин, В.А.Никитина, Л.А.Пуголовкин Е.А.Спектор

Использовались материалы, собранные ранее Б.Б.Дамаскиным и О.А.Петрием

БЛАГОДАРНОСТИ

VI курсу химического факультета МГУ за долготерпение

Е.П.Агееву, М.В.Коробову, А.Я.Борщевскому, И.А.Успенской за большую моральную поддержку