
МНОГОФУНКЦИОНАЛЬНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ ЭЛЕКТРООСАЖДЕННЫХ НАНОСТРУКТУРИРОВАННЫХ ОКСИДОВ

Г.А.Цирлина кафедра электрохимии, Химический факультет МГУ им. М.В.Ломоносова

Достоинства электрохимических методов осаждения оксидов

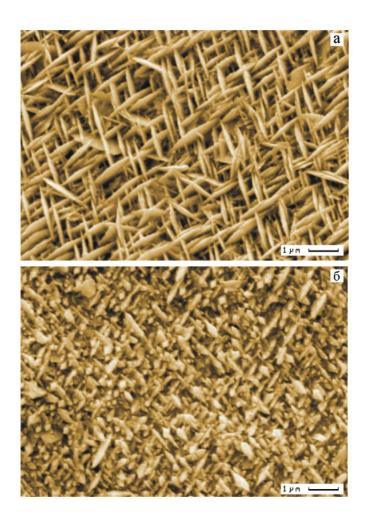
- Комнатная температура
 - экологические преимущества
 - низкая энергоемкость
 - адгезия
- Контролируемость
 - толщина покрытия
 - микро- и наноструктура
- Управляемость инструменты:
 - потенциал электрода
 - плотность тока

Недостатки

- Наличие жидкости
 - необходимость «защиты» некоторых элементов
 - необходимость удаления электролита
- Снижение управляемости при использовании подложек с низкой проводимостью
- Проблема сложных форм

Новая жизнь гальваники:

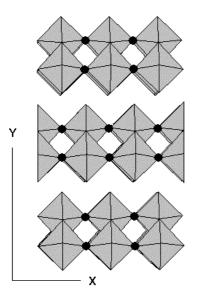
- <u>направленное осаждение</u> многкомпонентных нестехиометрических фаз;

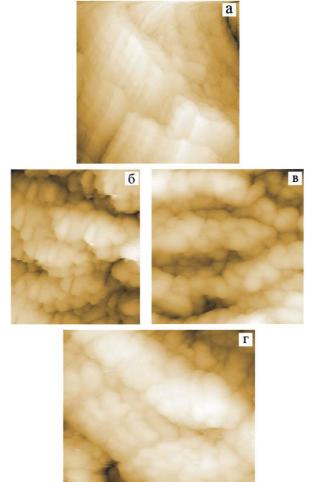

- наноструктурирование
 - темплатирование
 - молекулярные прекурсоры
- <u>микро(→нано) технологии</u> «размерной обработки»
- in situ мониторинг оптическими методами

Материалы электрохимических устройств

- электрохромные устройства
- электрохимические сенсоры
- устройства электрохимической энергетики
 - электрохимические конденсаторы
 - аккумуляторы
 - топливные элементы

Покрытия

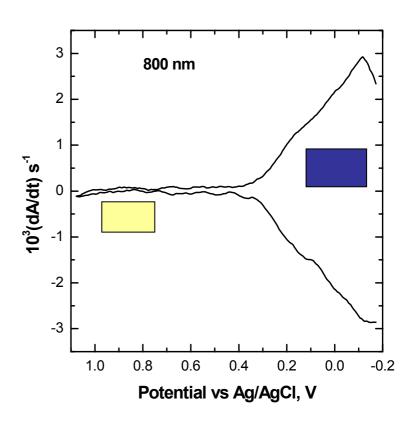

- антикоррозионные
- бактерицидные
- со специальными механическими свойствами


Перспективные российские разработки по электроосаждению оксидов

Оксиды вольфрама H_xWO₃

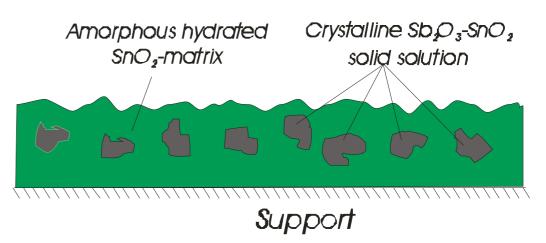
(МГУ-БИК СО РАН)

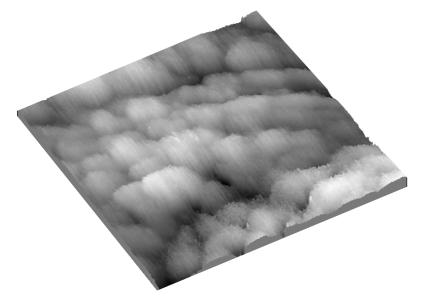
Нанокристаллы: 5 – 7 нм


1.4 1.2 1.0 Absorbance 8.0 0.6 0.4 red [-0.172V vs Ag/AgCl] 0.2 0.0 ox[1.078V vs Ag/AgCl] -0.2 300 400 500 600 700 800 Wavelength, nm

Технологичность:

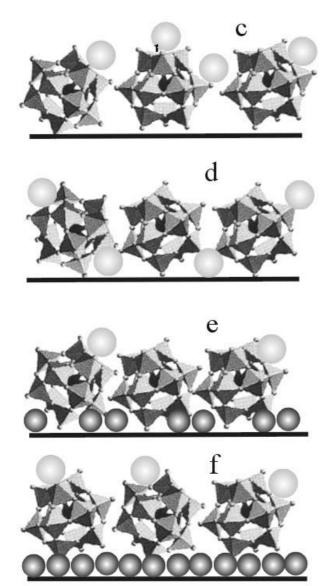
совместимость с разнообразными подложками

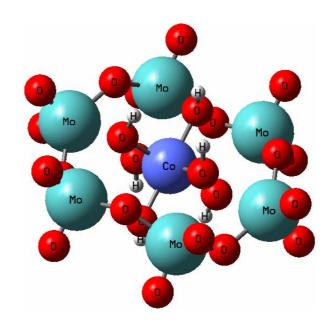

Электрохромизм:


высокая эффективность и малые времена перехода

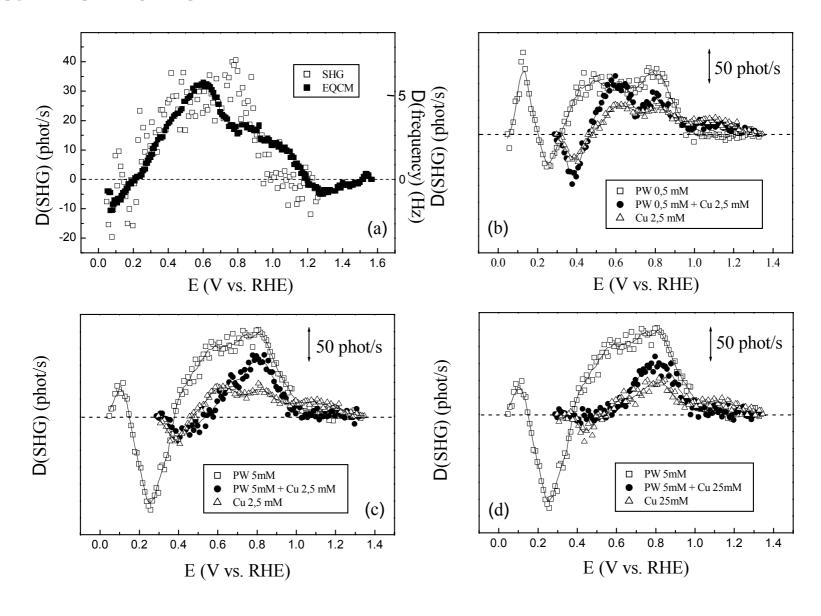
Наногетерогенные оксиды олова Sn(Ti)O_{2-x}

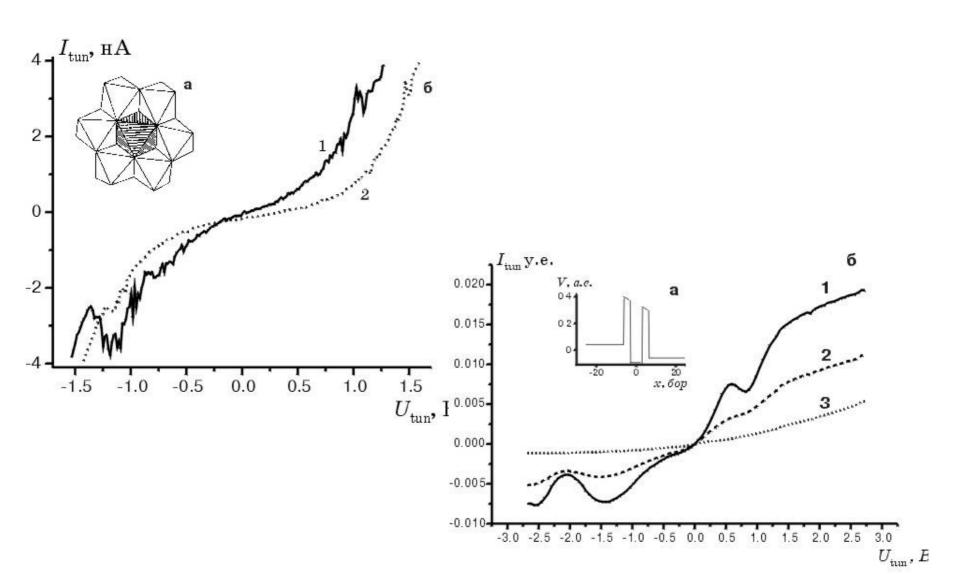
(МГУ-НИФХИ)




Активная фаза для конденсаторов:

1 Ф/г при времени перезарядки 30-50 с


Металл-оксидные композиции – формирование из молекулярных прекурсоров


(МГУ-МИРЭА, МГУ-КГТУ, МГУ-ТРИНИТИ)

Материалы для нелинейной оптики

Ноль-размерные системы с эффектом отрицательного дифференциального сопротивления – модифицированные зонды СТМ

ПЕРИОДЫ		Г	р у	пп	Ы	э л	E M	EHTOB	
	I	П	Ш	IV	V	VI	VII	νш	
1	H 1,008						(H)		2 4,003
2	Li 6,94	65004 E 9,01	5 10,61	G 12,01	7 14,01	8 16,0	9 19,0		10 Ne
3	Na 11	700012 Mg _{24,3}	13 Al	14 31 28,09	15 P	16 32,06	17 Cl		18 35,55
4	K 19	Ca 20	SC 21	Ti 22	V 23	Cr ²⁴	Mn 25	Fe 26 Co 27 Ni 28	
	29 53.55 Cu	30 Zn	31 69,1	32 12,59	33 AS	34 Se,se	35 Br		36 83,80 Kr
5	Rb 37	38 81,5	¥ 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru 44 Rh 45 Pd 46	
	47 Ag	48 Cd	49 114,6 In	50 Sn	51 5b 121.75	52 Te	53		54 131,3 Xe
6	CS 132,5	56 22000 131,3	*La 57	Hf ⁷²	T a 73	86009 ₄	Re 75	0s 76 Ir 77 Pt 78	
	79 196,9 Au	80 80 80	81 204,4	82 801.8 Pb	83 208,9	84 (210) Po	85 At		86 Rn

Финансовая поддержка (1996-2004): РФФИ, Миннауки, ФЦП «Интеграция»