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Кинетика стадии переноса электрона

Поляризационные кривые
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Феноменологические обоснования

Зависимость энергии активации от потенциала электрода
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Вращающийся дисковый электрод

Импеданс и опасности его использования.
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9.1
Обоснование эмпирических соотношений

E = a + b log i Эмпирическое уравнение Тафеля, 1905
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Уравнение Батлера-Фольмера
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Аррениуса

Соотношение Брёнстеда:
линейная зависимость энергии

активации от гальвани-потенциала

Уравнение Нернста
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9.1, 9.6
Теория замедленного разряда: А.Н.Фрумкин, 1933

Линейная зависимость энергии активации от падения потенциала

в зоне реакции

Зависимость концентрации реагента от потенциала в зоне реакции

(пси-прим потенциал) и энергий адсорбции (g) реагента и продукта
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Исправленная Тафелевская зависимость
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В этих координатах при корректном выборе пси-прим потенциала
совпадают i,E – кривые для разных концентраций электролита
фона и электродов с разными точками нулевого заряда
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Восстановление анионов на отрицательно заряженной

поверхности

Снижение концентрации электролита фона:
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и растет по абсолютной величине

Потенциал

нулевого
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(пнз)

Металлы с разными пнз:

Скорость переноса

электрона

Смешанный ток

9.6
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Кинетика стадии переноса заряда -
теория и экспериментальная проверка

Р. Герни, 1931 � принцип Франка-Кондона

Метод переходного состояния

Теория Маркуса:

- Франк-Кондоновский барьер

- реорганизации растворителя

Расчет внутрисферной энергии реорганизации и

энергии реорганизации растворителя

Зависимость коэффициента переноса от перенапряжения

Квантово-механическая теория переноса электрона

(Левич-Догонадзе-Чизмаджев-Кузнецов)



6

Принцип Франка-Кондона

Безызлучательный электронный перенос может осуществляться

только при близких (или равных) уровнях энергии электрона в
частицах донора и акцептора. 

Время перехода электрона (порядка 10–15 с) существенно
меньше времени, в течение которого ядра могут изменить свое
положение (10–13 с).

9.7

Обобщенная координата –
-ориентация диполей
растворителя и длины связей

в переходном состоянии
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9.7
Теория Маркуса (1956)

Параболические термы

начального/конечного
состояний с одинаковой

крутизной

Свободная энергия переноса электрона

Энергия реорганизации, Q1 и Q2 – координаты
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Скорость реакции переноса электрона O + e = R : перевод на язык
теории замедленного разряда

i = nFcOk
пэ

Работы подвода реагента

и отвода продукта:
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Все обозначения

см. в 9.7
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9.7
Формулы Маркуса для энергии реорганизации

Энергия реорганизации

растворителя для гомогенной

реакции переноса электрона

2
0

0 1 2

( ) 1 1 1 1 1

4p A
оп

e
N

a a R
λ

πε ε ε
  

= − + −  
  

2
0

0

( ) 1 1 1 1

8 2p A
оп

e
N

a R
λ

πε ε ε
  = − −  

  

Энергия реорганизации

растворителя для гетерогенной

реакции переноса электрона

Энергия внутрисферной реорганизации
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из структурных данных
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Эксперимент, проблемы твердых электродов:

- изменение состояния поверхности

- диффузионные ограничения

- «фоновые» вклады

- параллельные процессы

- многостадийность

Наиболее надежный вариант – вращающийся дисковый электрод:

0. Тестирование воспроизводимости

1. Серия кривых при разных 2. Определение кинетических токов
скоростях вращения

3. Серия кривых при разных 4. Определение порядка реакции
концентрациях реагента
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«Сырые» данные – вращающийся дисковый электрод, 
оксид-углеродные композиции,
восстановление кислорода

Весь ли исследуемый

материал «работает»?

Совпадают ли прямой и обратный ход?
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Чему отвечает «предельный ток»?

Расчет кинетических

токов, отнесение к
истинной поверхности

ω1/2
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Идеально поляризуемый электрод

Метод электрохимической спектроскопии импеданса

Разложение – только при
малых перенапряжениях!

+ реакция переноса
электрона Схема

Рэндлса
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Модификация схемы Рэндлса для пористых электродов

(феноменология)

Замена емкости на «элемент постоянного сдвига фаз»
(constant phase element, CPE)

ИЛИ

Введение других «обычных» элементов
Диффузия к плоскому электроду

в слое конечной толщины

(элемент
Варбурга)

ИЛИ

Схемы «с
длинной линией»
(transmission line 
мodel)
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Далее, для поиска физического смысла, 
нужны конкретные модели электрода
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Опасности в эксперименте:

- геометрия ячейки

- индуктивность проводов/измерительной системы


