REVIEWS OF MODERN PHYSICS, VOLUME 79, JULY-SEPTEMBER 2007

Structure and interactions of biological helices

Alexei A. Kornyshev™

Department of Chemistry, Faculty of Natural Sciences, Imperial College London, SW7 2AZ
London, United Kingdom

Dominic J. Lee'

Department of Chemistry, Faculty of Natural Sciences, Imperial College London, SW7 2AZ
London, United Kingdom

Sergey Leikin*

Section of Physical Biochemistry, National Institute of Child Health and Human
Development, National Institutes of Health, DHHS, Bethesda, Maryland 20892, USA

Aaron Wynveen§

Department of Chemistry, Faculty of Natural Sciences, Imperial College London, SW7 2AZ
London, United Kingdom

(Published 6 August 2007)

Helices are essential building blocks of living organisms, be they molecular fragments of proteins
(a-helices), macromolecules (DNA and collagen), or multimolecular assemblies (microtubules and
viruses). Their interactions are involved in packing of meters of genetic material within cells and
phage heads, recognition of homologous genes in recombination and DNA repair, stability of tissues,
and many other processes. Helical molecules form a variety of mesophases in vivo and in vitro. Recent
structural studies, direct measurements of intermolecular forces, single-molecule manipulations, and
other experiments have accumulated a wealth of information and revealed many puzzling physical
phenomena. It is becoming increasingly clear that in many cases the physics of biological helices
cannot be described by theories that treat them as simple, unstructured polyelectrolytes. The present
article focuses on the most important and interesting aspects of the physics of structured
macromolecules, highlighting various manifestations of the helical motif in their structure, elasticity,

interactions with counterions, aggregation, and poly- and mesomorphic transitions.
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I. INTRODUCTION

Genetic recombination, packaging of DNA in cells
and viruses, folding of proteins, and assembly of the or-
ganic matrix of bone are just a few of the many funda-
mental biological reactions that involve interactions be-
tween helical macromolecules. Some of these reactions,
such as self-assembly of collagen fibers, can be repro-
duced in a test tube without the complex biological ma-
chinery. Other reactions, like condensation and decon-
densation of chromosome material, are controlled by
multiple factors in cells. But even the latter reactions
ultimately depend on the underlying physics of helix-
helix interactions.

The physics of interactions between biological helices
is surprisingly rich and often counterintuitive. Collagen
self-assembles into highly ordered fibers at elevated
temperature instead of denaturing. DNA forms a variety
of liquid crystalline phases. In the presence of Mn?>* (but
not Ca?* or Mg?*), DNA liquid crystals self-assemble
from solution upon heating, just like collagen fibers. A
variety of polyamines and basic polypeptides also induce
“condensation” of DNA from solution into liquid crys-
tals, but the temperature does not play an important
role in this case.

In low-density, highly hydrated liquid crystals, DNA
packing is generally cholesteric. The average orientation
of the molecules is perpendicular to the cholesteric axis
and rotates around this axis with a period equal to the
cholesteric pitch (usually several microns). The choles-
teric packing is caused by chiral interactions between
the helices. One would expect such interactions to
strengthen with increasing density of the molecules, re-
sulting in a monotonically decreasing cholesteric pitch.
Instead, the cholesteric pitch goes through a minimum
and begins to increase again. A further increase in the
density causes a transition from the cholesteric to the
columnar (hexagonal) or line-hexatic phase even though
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the molecules are still separated by more than a nanom-
eter of water. When almost all water is squeezed out, a
conformational transition from the B into the A struc-
ture of DNA takes place. Electrostatic interactions be-
tween DNA at such densities become very strong, but
the charge density of DNA upon the transition into the
A conformation does not decrease. Instead, it increases
by almost 30%.

Studies of liquid crystalline phases of DNA, collagen,
a-helices, helical viruses, and so on, as well as measure-
ments of the chemical potential vs separation between
molecules within them, revealed many more surprising
phenomena and produced a wealth of experimental
data. But our understanding of the underlying physics is
clearly lagging behind these experiments. For instance,
the possible physical mechanisms of DNA condensation
into liquid crystals by counterions and the nature of the
short-range exponential forces between DNA molecules
observed in these liquid crystals are still debated in the
literature. At least in these debates, the problem is one
of choice between different models. The lack of under-
standing is more severe, for example, for the cholesteric
to hexagonal phase transition, for which a few specula-
tive ideas but no molecular models have been proposed.

Recent advances in theory and simulations suggest
that the key to the physics of these phenomena might be
in understanding the relationships between intermolecu-
lar interactions and the structure of the molecules
(and/or counterions adsorbed onto them). In retrospect,
this might seem obvious; for instance, the chirality of
DNA liquid crystals is a direct consequence of the chiral
structure of the double helix. Nevertheless, even now
some of the most popular models represent DNA by a
homogeneously charged cylinder.

This review is an attempt to analyze these recent ad-
vances within a general theoretical framework that in-
corporates models proposed by different authors as spe-
cial cases (including the cylinder-based models). Our
goal is to elucidate the most productive ideas through a
systematic comparison of the corresponding predictions
with all relevant empirical knowledge (rather than hand
picking a few measurements that fit the best). We focus
on electrostatic interactions since much more work has
been done in this area, and at least some consensus ap-
pears to be emerging. We only briefly discuss other in-
teractions (hard core, van der Waals and hydration), but
we point out their potential contributions whenever nec-
essary. DNA is the central object of the review, because
its analysis is more amenable to rigorous theory and be-
cause most of the empirical information was accumu-
lated for it. Nevertheless, we do discuss models and ex-
perimental observations for other biological helices
(a-helices, collagen, and guanosine) as well.

The general theoretical framework employed here is
based on the formalism of helical structure factors de-
veloped by Crick over 50 years ago (Cochran, Crick, and
Vand, 1952; Crick, 1953a, 1953b; Klug et al., 1958). The
Crick theory converted the art and magic of model
building into an exact science for rigorous analysis of
x-ray diffraction from noncrystalline aggregates of heli-
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ces. It allowed Watson and Crick (1953) to decipher the
structure of DNA from the x-ray data reported by Fran-
klin and Gosling (1953) and Wilkins et al. (1953). This
theory laid the foundation for the revolution in modern
biology and medicine, but it did not find its way into the
physics of helices until the last decade.

The review is structured as follows. In Sec. II, we in-
troduce the Crick structure factors and generalize them
for nonideal helices. We briefly discuss the discovery of
the DNA structure and point out some features of the
Franklin and Gosling diffraction pattern that were not
noticed at the time, although they contain important in-
formation about intermolecular interactions. In Sec. 1V,
we focus on the electrostatics of an isolated helix, relate
modern theories of counterion condensation to counter-
ion structure factors, and discuss available experimental
data. We address different models of pair interaction po-
tentials and phenomena related to the interaction be-
tween just two helices in Sec. V. In Sec. VI, we analyze
models of multimolecular, liquid crystalline assemblies
for which most of the experimental observations were
reported. We reconsider the interpretation of the classi-
cal DNA diffraction patterns and provide a detailed
comparison of the predictions of different models with
measured intermolecular forces. We also briefly describe
advances in the statistical mechanics of such assemblies,
which might present some additional interest due to the
unusual, frustrated form of the underlying interaction
potentials. In Sec. VII, we concentrate on a critical com-
parison of different proposed mechanisms of
counterion-induced DNA condensation. We briefly de-
part from the main theme in Sec. III to introduce the
elasticity theory of helical macromolecules. This area of
research has been rapidly pushed forward by recent ad-
vances in single-molecule manipulation techniques. For
interested readers we provide several references to some
of the latter studies, but we describe only those aspects
of helix elasticity that are essential for understanding the
physics discussed in subsequent sections.

In an effort to keep the analysis self-contained, when-
ever practical we provide the derivations in the main
text of the review. However, to simplify the task for
readers more interested in the physics than mathemati-
cal details of the theory, the derivations and formulas
that are too cumbersome or elaborate are described in
supplementary material (refer to the EPAPS Document
at the end of the Reference section).

II. STRUCTURE
A. Biological helices

Many biological macromolecules and their structural
domains consist of one or several interwoven helical
chains of atoms (helical strands). Examples of some of
the most common molecular helices are shown in Fig. 1.

The connected chain of polypeptide backbone atoms
forms a single, right-handed helical line in a polypeptide
a-helix [Fig. 1(a)]. Polyaminoacids and polypeptides
may have a pure a-helical conformation. More com-
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FIG. 1. Atomic structure of (a) a sample polypeptide a-helix,
(b) a double-stranded helix of B-DNA, and (c) triple-helix col-
lagen. The gray ribbons are guides to the eye showing the
protein or DNA helical backbones. The two grooves separat-
ing the sugar-phosphate backbone strands (ribbons) in DNA
are often referred to as minor and major grooves based on
their size in the B form of DNA.

monly, however, shorter a-helices form the building
blocks of proteins.

Two sugar-phosphate chains form the backbone of
DNA, the macromolecular carrier of the genetic infor-
mation [Fig. 1(b)]. The two strands are connected to-
gether via hydrogen bonds between the nucleotide “side
chains.” The hydrogen-bonded pairs of nucleotides
(base pairs) are stacked, forming the inner core of the
molecule [Fig. 1(b)]. Depending on its environment and
mechanical strain, the DNA double helix may have sev-
eral different helical forms, of which the most common
are right-handed A- and B-DNA, and the most peculiar
is the left-handed Z-DNA. Several different helical con-
formations of DNA may even coexist as domains of the
same long molecule (Ha et al., 2005).

Collagen [Fig. 1(c)] is a triple helix formed by three
interwoven, left-handed polypeptide chains connected
together through hydrogen bonds between backbone
amide and carbonyl groups. Collagen triple helices self-
assemble into fibers which form tendons, ligaments, and
the organic scaffold of bone, skin matrix, and other
structures of connective tissues.

More complex supramolecular helices are formed
upon self-assembly of small molecules. For instance,
self-assembly of guanosine-phosphate nucleotides pro-
duces a four-stranded guanosine helix, which mimics the
structure of chromosome telomeres. Some proteins self-
assemble into multimolecular helices such as microtu-
bules and actin filaments in cytoskeleton. Some viral
particles [e.g., tobacco mosaic virus (TMV)] are also
multimolecular helices formed by self-assembly of sev-
eral different proteins, encapsulating a nucleic acid in
the viral particle core.

B. Helical structure factors

A rigorous description of helical macromolecules in
terms of their structure factors in reciprocal space was



946 Kornyshev et al.: Structure and interactions of biological helices

FIG. 2. X-ray-diffraction pattern from calf thymus B-DNA
(Franklin and Gosling, 1953) showing the location of layer
lines, Eq. (9), on the scattering wave-vector axis. The lines of
constant k, (thin solid lines) are slightly curved due to the
specific geometry of x-ray film mounting. From Franklin and
Gosling, 1953.

proposed by Cochran, Crick, and Vand (1952) to de-
scribe x-ray scattering from a-helical polypeptides. It
was crucial for the discovery of the DNA structure by
Watson and Crick (1953) and formed the basis of mod-
ern crystallography of helical macromolecules.

In this section we describe the helical structure factors
in the context of a generalized form of the Cochran-
Crick-Vand (CCV) theory for x-ray scattering from heli-
cal macromolecules. In Secs. IV and V we utilize the
same expressions in a different context and demonstrate
that these structure factors and structural parameters
also determine structure-dependent physical properties
and interactions between macromolecules.

The x-ray scattering intensity of an ensemble of mac-
romolecules is given by

I(k) = 2 2 fif (F/(K)F(- K)), (1)

v i

where k= (k,,K), is the scattering vector (Fig. 2), f; is the
scattering amplitude for each type of scattering center,
and

F/(k) = J n!(r)exp(ik - r)d°r (2)

is the Fourier transform of the density n;(r) of scattering
centers i on the molecule v. Hereafter we refer to Fj(k)
as the structure amplitude and to (F;’(k)F]’.‘(—k)) as the
average structure factor, although some authors reserve
the latter term for 2,f;F7(k). The structure factor is av-
eraged over both time and volume inside the x-ray
beam, to account for dynamic (thermal) fluctuations and
static, quenched disorder (e.g., due to sequence-
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FIG. 3. Convention used for x-ray analysis of helical mol-
ecules. The location of each molecule is given by the lateral
(R,) and axial coordinates (Z,) in the laboratory frame
(X,Y,Z). The local (r,z,¢) coordinates of the atomic scatter-
ing centers in the molecule v have their origin at the location
(R,,Z,). The molecular azimuthal orientation @, of a helix is
determined by a cut through molecular origin (R,,Z,) parallel
to the XY plane.

dependent variations in molecular structure, discussed in
Sec. ILE and throughout the review).

For helical macromolecules, it is convenient to de-
scribe the density of scattering centers within each mol-
ecule v in cylindrical coordinates (r,z, ¢), which are co-
axial with the main axis of this molecule and associated
with a selected point of origin (Z,,R,), which defines the
lateral (R,) and axial (Z,) coordinates of the molecule
(Fig. 3). It is also convenient to separate scattering cen-
ters into subhelices i, which are distinguished not only
by the kind of centers they are composed of (e.g., phos-
phate, carbon, oxygen, and other atoms) but also by
their radii a;,

ﬁ;/(r’z’d))En;/([)OC a(r_ai)’ (3)

where &(x) is the Dirac 6 function.
For straight, helical macromolecules, the structure
factors are given by CCV as

1
(F/(K)F(-k))= 2—2 i""s H(k,n,m),(Kad ,(Kay)
Tynm |

X <e—inq),,+im<I>MeikZ(Z,,—ZM)eiK(RV—RH)>. (4)

Here K=|K|, J,(x) is the cylindrical Bessel function of
order n, ®, is the azimuthal orientation of each mol-
ecule at the point of origin (Fig. 3), and we introduced
the molecular structure factors

sif(g.n,m) = (vi(q.my'(= g,- m)), 5)

based on the Fourier transforms in local coordinates as-
sociated with each molecule,
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1 2 o ® . '
vi(q,n) = —f dd)f dzf rdrii(r,z,$)e" e,
277 0 % 0

(6)

The advantage of utilizing the latter factors is that they
are independent of the locations and orientations of the
molecules and are determined only by the molecular
structure.

C. Ideal helices

The structure factors for ideal helical chains of atoms
have a fairly simple form. Consider, e.g., a two-stranded,
right-handed helix formed by regularly spaced points,
which mimics the pattern of phosphates on DNA [Figs.
1(b) and 7],

-2 - 2
S A R Al

y Sr—a)
a

S8z —1h), (7)

where / is the running index numbering the phosphates,
24, is the azimuthal angle between the strands, H is the
pitch of the helix, 4 is the axial rise per residue, and a is
the helix radius. The molecular structure factor of this
helix is given by
2
syt(kz,n,m) = —% cos(n)cos(md,)

i)
X 2 5kz,Gj—gn5m,n+JG/g7 (8)
JJ==»
where N, is the total number of phosphates on each

strand, G=2w/h, g=2m/H, and &, , is the Kronecker
delta (5, ,=1 at x=y and &, ,=0 at x #y).
Because of the helical symmetry, the structure factor

is not zero only along the layer lines (Cochran, Crick,
and Vand, 1952),

k,=jG -ng, 9)

whose separation is determined by the helical pitch and
the axial rise per residue. In fact, the same symmetry
rule also determines important properties of interactions
between helical macromolecules (see Sec. V).

D. Discovery of DNA structure

Soon after the CCV theory of helical structure factors
was published, high-quality fiber diffraction patterns of
DNA were reported by Franklin and Gosling (1953) (see
Fig. 2) and by Wilkins et al. (1953). Interpretation of
these patterns based on the CCV theory allowed Watson
and Crick to decipher the structure of DNA (Watson
and Crick, 1953).

The classical interpretation of the DNA fiber diffrac-
tion pattern shown in Fig. 2 is based on the assumption
most clearly formulated by Franklin and Gosling: “It
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therefore seems reasonable to suppose that in structure
B the structural units (DNA) are relatively free from the
influence of neighboring molecules, each unit being
shielded by a sheath of water” (Franklin and Gosling,
1953). Indeed, assuming uncorrelated molecular rota-
tions we find

<e—in(1)V+im<I>Meikz(ZV—Z'u)eiK~(RV—Rﬂ)>
= 8, uOum+ (18,08 08,08, 0™ ®R).(10)

Taking into account that the scattering amplitude of
phosphates is much larger than those of other atoms or
molecules, the contribution of the latter to the diffrac-
tion pattern from noncrystalline fibers can be neglected
and (Klug et al., 1958)

©

1K) =N X _pg jc cos’(n)J (Ka)

1,j==

+ 8k oo(Ka) X (™R, (11)
vE L
where N is the number of DNA molecules in the x-ray
beam. The first and second terms in Eq. (11) describe
intramolecular and intermolecular scattering, respec-
tively.

The two strong spots on the equator (k,=0) in the
diffraction pattern shown in Fig. 2 correspond to the first
order of intermolecular Bragg scattering on a hexago-
nally packed fiber described by the second term in Eq.
(11). They correspond to the smallest K at which
K-(R,-R,)=27M (M=0,+1,+2,...) and are related to
the interaxial spacing d;,, between the nearest neighbors
as K=4r/ \s‘gdim. Higher-order diffraction peaks cannot
be seen clearly because of imperfect hexagonal packing
and the relatively small number of molecules in the fiber.

The nonequatorial (n # 0 and/or j # 0) diffraction spots
originate from intramolecular scattering described by
the first term in Eq. (11). The cross formed by the dif-
fraction spots on the n=+1,+2,+3,+5; j=0 layer lines
iIs in good agreement with the maxima of the corre-
sponding Bessel functions J,(Ka), assuming that the ra-
dius of DNA is a=~10 A. The distance between these
layer lines 277/ H reveals the helical pitch of the mol-
ecule, H~34 A. The notable absence of diffraction

spots at n==+4, j=0 suggests that cos(4¢,)=0 or ¢,
~(.387. The two darkest spots on the meridian corre-
spond to n=0, j=+1, k,=27/h and reveal the axial rise
per base pair, h=3.4 A. Their smearing toward the cen-
ter of the pattern is related to imperfect orientation of
the molecules in the fiber, imperfections of the helical
structure, thermal motions, and overlap with adjacent
diffraction spots (n=+1,+2;j=+1).

E. Nonideal helices: Helical coherence length

At the time of the discovery of DNA structure the
ideal helix approximation seemed reasonable, and no
further structural details were known. Later, atomic-
resolution structures of DNA oligomers (short, 10-20
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base pair fragments) were obtained by x-ray diffraction
from crystals (Dickerson and Drew, 1981; Dickerson,
1992). They revealed significant deviations from the
ideal helix due to sequence dependence of the structural
parameters. It was argued that such nonideality of the
DNA structure is important for its function (Gorin ef al.,
1995; Rozenberg et al., 1998).

To illustrate possible effects of deviations from the
ideal helix on the structure factors, we first modify the
DNA model discussed above by incorporating a realistic
sequence-dependent twist between adjacent base pairs.
In the ideal helical conformation described by Eq. (7),
the twist angle between the adjacent base pairs,

O(z) = ¢z +h) - $(2), (12)

was assumed to be constant. In contrast, real DNA has
ten distinct combinations of adjacent base pairs, all of
which have different preferred values of (). The axial
pattern of this intrinsic twist angle ,=Q(z=1[h) is a
unique, sequence-dependent “fingerprint” of DNA
structure.

We now take into account that (); have different val-
ues and that real DNA sequences have no long-range
correlations in ); (Stanley ef al, 1999). The deviation
from the average twist angle (),

(,OI=Q[—<Q>, (13)

is relatively small [ (wf)EAQ~4°—6°, (Q))=34°
(Kabsch et al., 1982; Gorin et al., 1995; Olson et al.,
1998), and () denotes an ensemble average over all pos-
sible ();]. Nevertheless, this nonideality has important
implications. In particular, it leads to a deviation of ¢(lh)
from the value expected for an ideal helix [ $(0)+{(Q)I],

S¢(lh) = ¢(lh) — $(0) — (), (14)
which follows the simple law of a random walk,
([o¢(Ih) — (")) = | = I'|HIN.., (15)

at a large number of steps (|/[-!'|>1), where \,
=h/3Z{w; w,;) may be referred to as the helical coher-
ence length (Kornyshev and Leikin, 2001; Cherstvy et al.,
2004).

For such helices, the molecular structure factor has
only diagonal components n=m but its general form is
rather cumbersome (Inouye, 1994; Mu et al., 1997). For
typical parameters of DNA, the dominant term in this
expression is given by

N6, N
Sy k) = =L (cos nh)?
xS n?/\h
7 (k,+ng —JG)? +n*aN?’

(16)

Similar to ideal helices, Eq. (16) has the maxima at k,
given by Eq. (9). However, the intensity of the maxima
decreases as n~2 and their width increases as n’> (Egel-
man et al., 1982; Egelman and DeRosier, 1982; Barakat,
1987). It follows from Eq. (16) that the ideal helix ap-
proximation for the structure factor is valid only when
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n> <4m\JH. (17)

Not only the twist but the base pair tilt, roll, and axial
rise depend on the sequence (Bolshoy et al, 1991).
These, as well as thermally induced structural variations,
may contribute to further deviations from the ideal he-
lix. However, such variations still exhibit the simple
random-walk behavior described by Eq. (15) at large dis-
tance scales. As a result, the deviation of the average
structure factor from an ideal helix can generally be de-
scribed by Eq. (16) with the single parameter of the he-
lical coherence length \.. Different independent contri-

butions )\(Ci) into the helical coherence length simply add
up as (Lee, Wynveen, and Kornyshev, 2004)

A=Y, (18)

reducing the total helical coherence length A..

An estimate of the helical coherence length of DNA
based on the known average structural parameters and
elasticity constants (Kabsch et al., 1982; Hagerman, 1988;
Dickerson, 1992; Gorin et al., 1995; Olson et al., 1998)
and from direct analysis of known NMR structures of
B-DNA fragments in solution yields \,~100-300 A
and 4m\ ./ H~30-100 or smaller. The diffraction pattern
calculated from Eq. (16) shows a noticeable deviation
from the ideal helix approximation at n=3 and strong
smearing and almost complete disappearance of the dif-
fraction peaks at n=5. In contrast, the n=5 peaks in the
observed diffraction patterns (Fig. 2) are still quite sharp
and consistent with the ideal helix model.

F. Effect of assembly on DNA structure

Around the time Franklin and Gosling photographed
the diffraction pattern shown in Fig. 2, the imperfectness
of the helical structure of DNA was not known. It is the
present knowledge of the sequence-dependent structure
variations that makes the ideal appearance of the double
helix in their pictures surprising. It suggests that long,
natural DNA molecules in hydrated aggregates are
closer to ideal helices than DNA in solution and short
oligomers in crystals.

In fact, the first indication that DNA molecules be-
come more uniform and closer to ideal helices when
packed into aggregates was obtained several decades
ago. A significant variation in the twist angle per base
pair (bp) with the average near 10.5 bp per helical turn
was observed in solution (Wang, 1979; Rhodes and Klug,
1980), while nearly perfect, integral 10.0 bp/turn helices
were observed in hydrated fibers regardless of packing
density (Zimmerman and Pheiffer, 1979; Rhodes and
Klug, 1980).

In Sec. VI we detail further, direct evidence demon-
strating that the simplifying assumption about DNA be-
ing “free from the influence of neighboring molecules”
was incorrect. A more general interpretation of the clas-
sical diffraction patterns without this assumption turns
out to be in better agreement with the established Wat-
son and Crick model. The interactions between neigh-
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boring molecules are strong enough not only to affect
their alignment but even to change their structure.

Significantly, the variation of structural parameters of
synthetic DNA oligomers in crystals is closer to that in
natural DNA in solution than in hydrated fibers (Dick-
erson, 1992), suggesting that interactions between frag-
ments with identical sequences in crystals are different
from interactions between long DNA with uncorrelated
sequences in fibers. In other words, intermolecular inter-
actions between DNA depend not only on overall struc-
ture of the double helix, but also on the sequence of
base pairs. In Sec. V we give a clear interpretation of
this phenomenon.

G. Bent and supercoiled helices

In nature, DNA and other biological helices rarely
exist as straight rods. Most of the time they bend, wind-
ing around other molecules and around each other. For
instance, eukaryotic DNA is wound around a protein
core in nucleosomes. The three left-handed helical
chains of collagen triple helix are wound together in a
right-handed helical supercoil. The two a-helical chains
in myosin filaments coil around each other forming an
extended coiled coil. (The latter term is typically used
for a-helices while supercoil is a part of DNA terminol-
ogy, but otherwise they have similar meaning.) Circular
DNA fragments form a variety of supercoiled structures
with the help of specialized enzymes (topoisomerases).
A schematic picture of a supercoil made by two mol-
ecules is shown in Fig. 4.

Various aspects of the studies of such structures have
been described in numerous reviews [see, e.g., Vologod-
skii and Cozzarelli (1994) and Mason and Arndt (2004)].
Surprisingly little attention, however, has been paid to
the physics of the interactions governing the structural
hierarchy in these objects. For instance, we still do not
know how the pitch of the molecular helix affects the
energy and the structure of the supercoil formed by two
such helices tightly wound around each other.

We return to a more detailed discussion of this issue in
Sec. IV. Here, we point out that the first step toward a
rigorous solution of this problem would be the calcula-
tion of the structure factor of a coiled coil. Such a calcu-
lation was actually reported by Crick (1953a, 1953b).

The density of atoms in a cross section r=(R,z) of the
strand j of a coiled coil with a large supercoli pitch P can
be approximated as

n(R,z) = f (R’ - R,z)n(R',z)d’R’, (19)
which is the convolution of the continuous helix formed

by the centerline [x=x,(z), y=y,(z)] of the strand,

nl(x,y,2) = 8(x — b;cos(Qz — ) &(y — b;sin(Qz — ),
(20)

and the density of atoms n{](R,z) in the z cross section
of the strand in the coordinate frame coaxial with its
center. Here, in Eq. (20), b;, Q=2/P, and ¢; are the
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FIG. 4. Sketch of a supercoil (coiled coil) formed by two heli-
cal molecules (strands).

radius of the helix formed by the central line, the super-
coil twist, and the supercoil azimuthal phase, respec-
tively. We can think of n{)(R,Z) as the density of atoms in
the straightened strand j in a coaxial coordinate frame.
In the simplest case, when each strand of the coiled coil
is a single-chain helix with pitch H and equal axial spac-
ing & between the atoms, n{J(R,z)znp(r, ¢,=0)/2, where

ny(r, ¢,) is defined by Eq. (7). A straightforward calcula-
tion of the Fourier transform of n;(R,z) yields

> J(Ka)l,(Kb) Sk_,Gl-gn-0m

l.n,m=—c

Fi(k) = Q2m) "2

Xei(m+n)(<f>k+17/2)—imz//j—in¢>]«’ (21)

where as well as b; and ¢; we have a; and ¢;, which are
the radius and the azimuthal phase of each helical
strand, respectively. This approximation for the struc-
ture amplitude corresponds to Crick’s result (Crick,
1953a, 1953b), generalized to the case of several strands,
when 2m7b;/ P<1. The latter is often the case for super-
coiled biological helices.
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In Sec. IV we show how this structure amplitude can
be used to calculate the electrostatic energy of a coiled
coil. More general expressions for the structure ampli-
tudes may contain distortions of the helical structure, as
discussed above, various details about the discrete mo-
lecular structure of the helices, and so on. This awaits
further development.

H. Summary and comments

We see that the rigorous description of ideal and non-
ideal helices and even such complex objects as coiled
coils is conceptually and mathematically quite simple,
despite the somewhat meticulous algebra and the tradi-
tionally cumbersome notation. The corresponding lan-
guage of molecular structure factors has so far been con-
fined primarily to crystallography texts. However,
learning it is well worth the effort for physicists inter-
ested in biological macromolecules. Not only was this
language crucial for unlocking the secrets of DNA and
protein structures, but, as discussed in the forthcoming
sections, we argue that it may hold the key to under-
standing relationships between molecular structure and
interactions and to unraveling the complex physics of
assemblies of biological helices.

II1. ELASTICITY

Since intermolecular interactions affect the structure
of biological helices (Sec. IL.F), part of the work of
bringing two or more helices together is expended to-
ward the elastic cost of changing their structure. In this
section we discuss the simplest continuum model of mo-
lecular elasticity, which allows one to account for these
effects. The theory and measurements of elasticity of
helical macromolecules, particularly DNA, have at-
tracted so much interest in recent years that it is not
practical here to provide a more comprehensive review.
For an in-depth study we refer an interested reader to
several recent reviews (Hagerman, 1988; Schlick, 1995;
Olson and Zhurkin, 2000; Travers, 2004; Benham and
Mielke, 2005; and references therein).

A. Elastic rod theory

The continuum description of the mechanics of long,
rodlike macromolecules is based on macroscopic elastic
rod theory, sometimes referred to as Kirchhoff and
sometimes as Cosserat theory [for a formulation and
brief history of its development, see, e.g., Antman
(2005)]. The elastic energy of a rodlike macromolecule is
described by

1 (- deo 2
E:EJO |:B1(C1—C(1))2+Bz(C2—Cg)2+Ct<£—g0)
d 2
+cs<—s—1) }ds, (22)
dSO

where L is the length of the molecule and s is the coor-
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dinate along its centerline. The first two terms in the
integrand give the bending energy; c¢; and ¢, are the two
principal curvatures, B; and B, are the corresponding
bending rigidities, and ¢! and ¢J are the intrinsic curva-
tures in an undeformed state. The third term is the tor-
sional energy, ¢ is the azimuthal orientation (twist angle)
of the rod, d¢/ds is the torsional strain (twist per unit
length), C, is the torsional rigidity, and g is the intrinsic
twist (e.g., the intrinsic twist of an ideal helix with pith H
is go=2m/ H). The last term is the energy associated with
the axial strain (ds/dsy—1) caused by displacement of
material from the centerline position s, to s upon
stretching; C is the corresponding stretching elasticity.
Because of molecular heterogeneity, for example, se-
quence variation in DNA, the intrinsic curvatures, twist,
and all elastic constants might explicitly depend on s
(Manning et al., 1996). Shearing of macromolecular heli-
ces is usually neglected.

In general, bending, twist, and stretching are coupled
to each other. The pitch H and therefore g, are affected
by the stretching of the centerline. The directions of the
principal curvatures are determined by the molecular
structure and depend on the twist angle ¢ at each point
s. The latter dependence results in a tradeoff between
bending and twist and has a significant effect on the lo-
cal equilibrium shape in molecules with anisotropic
bending rigidity (B;# B,) such as DNA [see, e.g., Bala-
eff et al. (2006), and references therein]. Explicit twist-
bend (Marko and Siggia, 1994) and twist-stretch
(O’Hern et al., 1998) coupling energies can also be intro-
duced.

In many cases, however, the expression for the elastic
energy can be significantly simplified. In particular, the
centerline is frequently not stretched and its bending oc-
curs on much larger distance scales than twist
(ciH,coH<1). Such gradual bending becomes decou-
pled from the twist and can be described by an isotropic
bending rigidity B and zero intrinsic curvature (Kehr-
baum and Maddocks, 2000; Rey and Maddocks, 2000).
Small variations in local intrinsic curvatures and bending
rigidities (e.g., due to sequence dependence in DNA)
result in renormalization of the effective value of B at
larger distance scales where bending becomes isotropic
and sequence independent (Trifonov et al., 1987; Nelson,
1998). The elastic energy of an inextensible rod without
sharp kinks can therefore be rewritten as

1 L d2 () 2 d () 2
e o8 o242 o

(23)

where r(s) is the coordinate of each point s on the cen-
terline and d’r(s)/ds? is the curvature of the centerline.
While the effective torsional rigidity and intrinsic twist
are also often assumed to be constant, Eq. (23) under-
scores that their explicit dependence on s in highly
twisted biological helices (e.g., goh~1 in DNA) might
become important.
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Continuum models based on Egs. (22) and (23) have
been successfully applied to explain many phenomena,
from the complex shapes and topologies of supercoiled1
DNA (Benham, 1983; LeBret, 1984; Tanaka and Taka-
hashi, 1985; Tsuru and Wadati, 1986; Jiilicher, 1994;
Schlick, 1995; Coleman and Swigon, 2004) to switching
between right- and left-handed helical conformations in
bacterial flagella (Goldstein et al., 2000). Note, however,
that a different approach was utilized to describe helical
tubules and ribbonlike helices formed upon self-
assembly of chiral amphiphilic membranes [see, e.g.,
Chung et al. (1993), Schnur (1993), Selinger et al. (1996),
Zastavker et al. (1999); Smith et al. (2001), Zastavker et
al. (2005), and references therein].

Remarkably, treating DNA as a simple elastic rod not
only captures the qualitative physics but often provides
an accurate quantitative description of elastic strains and
stresses in biological helices, as demonstrated by numer-
ous studies of DNA discussed below (Sec. II1.C).

B. Thermal motions

In addition to elastic deformations in response to ex-
ternal stresses, long semi-flexible helices undergo
“wormlike” thermal motions. Most often these motions
are described within the simplest wormlike-chain model
(Kratky and Porod, 1949; Fixman and Kovac, 1973; Ko-
vac and Crabb, 1982; Odijk, 1995; Ha and Thirumalai,
1996), which incorporates only the isotropic bending en-
ergy given by Eq. (23) and the entropy of chain configu-
rations. However, various extensions of this model have
also been developed to account for elongation of the
molecules in conjunction with electrostatic effects
(Odijk, 1977; Skolnick and Fixman, 1977; Barrat and
Joanny, 1993; Marko and Siggia, 1995; Hansen et al.,
1999; Podgornik et al., 2000) twisting (Kamien et al.,
1997; Marko, 1997a, 1997b), and supercoiling of the mol-
ecules under special circumstances (Bouchiat and
Mézard, 1997, 2000; Moroz and Nelson, 1998).

For instance, without a stretching force the mean
square distance between the ends of a long, inextensible,
untwisted wormlike-chain is given by (Kratky and Po-
rod, 1949; Harris and Hearst, 1969)

([x(L) = x(0)]%) =2\ (LI, = 1 + e 1) (24)

while (r(L)-r(0))=0. Here \,=B/kgT is the persistence
length of the molecule and kzT is the thermal energy.
The stretching force f needed to hold the ends of such a
chain at the average distance (z) (in the projection of the
direction of the force) can be approximated by (Marko
and Siggia, 1995)

'Note that supercoiling of closed DNA loops is topologically
constrained. In particular, the number of times each strand
wraps around the central axis of the molecule is a topological
invariant (the linking number). Since such deformations are
not discussed in present review, we refer the reader to Volo-
godskii and Cozzarelli (1994) and Bloomfield et al. (2000).
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This expression, derived as an interpolation formula be-
tween f\,/kpT<1 and f\,/kgT>1 (Marko and Siggia,
1995), fits the results of the force-extension measure-
ments on single DNA molecules over several orders of
magnitude (Bustamante et al., 1994).

C. DNA elasticity

Measurements of the effective size of stretched and
unstretched chains and the probabilities of the two ends
of a DNA fragment joining together to form a circle
were used in numerous experimental studies of DNA
flexibility. In most cases the wormlike-inextensible-chain
model with isotropic bending elasticity was found to
work extremely well. The same effective bending rigid-
ity of B=2x10"" ergem (\,~50 nm) was deduced
from single-DNA-molecule stretching experiments, elec-
tric birefringence, electron microscopy, hydrodynamic
stretching, ligase-catalyzed DNA ring closure, and other
techniques (Hagerman, 1988; Crothers ef al., 1992; Smith
et al., 1992; Bustamante et al., 1994; Bednar et al., 1995;
Perkins et al., 1995; Cluzel et al, 1996; Wenner et al.,
2002). The bending rigidity weakly depends on salt con-
centration above 50 mM, but increases almost twofold
between 10 and 1 mM (Hagerman, 1988; Wenner et al.,
2002). Surprisingly, the values of the bending rigidity ob-
tained for small, ~100 bp, circles of DNA with signifi-
cant curvature (cH~0.6) were also similar (Du er al.,
2005), suggesting that anisotropy and sequence depen-
dence of the rigidity become important only at higher
curvatures or smaller length scales.

In single-molecule experiments with large stretching
forces it becomes important to account for the stretching
elasticity of DNA (Smith er al., 1996). It was argued that
similar strong stretching of DNA might also be induced
by proteins in vivo and might play an important role in
biological processes [see, e.g., Kosikov et al. (1999), and
references therein]. The value of the stretching elasticity
modulus estimated from single-molecule stretching ex-
periments was found to be C,~1x10"* dyn [see, e.g.,
Smith et al. (1996), Wenner et al. (2002), and references
therein]. It appears to be only weakly dependent on salt
concentration from 2 mM to 1M NaCl (Wenner et al.,
2002), as predicted by Podgornik et al. (2000).

There is less agreement on the torsional rigidity
modulus of DNA. Values from ~1x107"to ~5
%X 10712 erg cm have been reported based on measure-
ments of the distribution of different topoisomers in su-
percoiled DNA loops, the probability of ligase-catalyzed
DNA ring closure, and fluorescence polarization aniso-
tropy of fluorophores bound to DNA (Allison and
Schurr, 1979; Barkley and Zimm, 1979; Millar et al.,
1980; Shore and Baldwin, 1983; Horowitz and Wang,
1984; Taylor and Hagerman, 1990; Crothers et al., 1992).
As opposed to the case of bending rigidity, all of these
measurements require more extensive theoretical mod-
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eling for interpretation of the results, which was dis-
cussed as one possible reason for the lack of good agree-
ment (Bryant et al., 2003). However, the most recent,
refined data from such experiments (Heath et al., 1996)
and more direct measurements based on the twisting of
single molecules (Allemand et al., 1998; Strick et al.,
1999; Bryant et al., 2003; Smith et al, 2003) yield ap-
proximately the same torsional rigidity value, C,=3
X 10719-4x 107" erg cm.

A thornier and still debated issue is the local elastic
response of DNA to deformations at distance scales on
the order of the pitch or smaller. One interesting contro-
versy associated with local elastic constants was raised
by measurements suggesting lower rigidity of DNA at
smaller distance scales (Akiyama and Hogan, 1997; Zuc-
cheri et al., 2001; Cloutier and Widom, 2004), in contrast
to the opposite theoretical expectation (Nelson, 1998),
although some of these measurements have been ques-
tioned (Du et al., 2005).

At small distance scales, the sequence, discreteness,
and anisotropy of the molecule are likely to become im-
portant (Calladine and Drew, 1986). The corresponding
discrete models of DNA as elastically connected base-
pair stacks [see, e.g., Bolshoy et al. (1991), Olson et al.
(1993), Coleman et al. (2003), and references therein] as
well as continuous models with sequence-dependent in-
trinsic twist, curvatures, and local elastic constants [see,
e.g., Manning et al. (1996), Vaillant et al. (2003), Balaeff
et al. (2006), and references therein] have been consid-
ered. In Secs. V and VI we discuss how the latter ap-
proach can be used in evaluation of sequence-dependent
effects in interactions between DNA molecules. It is im-
portant to keep in mind, however, that all such ap-
proaches suffer from the classical (yet rarely mentioned)
problem of utilizing inherently macroscopic approxima-
tions (e.g., thermal equilibrium and ergodicity) at a me-
soscopic level (Laughlin et al, 2000). While one might
expect to capture much of the qualitative physics, the
quantitative accuracy of these approximations is not well
defined.

D. Summary and comments

Deformations of a molecular helix over distance
scales much larger than its pitch appear to be well de-
scribed by the simple model of a continuous elastic rod
with bending, torsional, and stretching rigidity. For
DNA, this model has been extensively tested and con-
firmed experimentally, and the effective values of the
corresponding elastic constants have been determined
reasonably well. As discussed further, the cost of such
deformations plays an important role in the energetics
of assemblies of biological helices.

IV. ELECTROSTATICS

All biological helices produce strong electric fields
near their surfaces, whether they are highly charged like
DNA or zwitterionic like a-helices or collagen. These
fields are important for biological function. Activation
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of chromosomes for genetic transcription is controlled
through enzymatic modification of histone tail charges
that neutralize DNA wound on nucleosomes. Interac-
tion between a-helices (usually misinterpreted as dipo-
lar, Sec. IV.A) is an important force in protein folding.
Electrostatics contributes to proper alignment of col-
lagen helices in fibers, forming tendons and the organic
matrix of bone.

Most often, electric fields and electrostatic interac-
tions of helices are described at two extremes. In simpli-
fied models the helical structure is neglected and the
molecule is approximated by a charged line or cylinder.
All-atom computer simulations account for the struc-
ture, but they are usually applied to quantify local
events, for example, binding of counterions or ligands.
Both of these approaches have been well reviewed
(Frank-Kamenetskii et al., 1987; Jayaram and Beveridge,
1996). Here we try to fill the void in the middle. We
focus on recent advances in models that relate helical
charge patterns to the physics of such collective phe-
nomena as interactions between long helices, supercoil-
ing, mesomorphic and polymorphic transitions in aggre-
gates, and so on.

A. Zwitterionic helix in a nonpolar dielectric medium

Consider the simplest example of an exact solution for
the electric field created by a zwitterionic helix, a net
neutral arrangement of positive and negative charges,
embedded in a nonpolar dielectric medium. We assume
that the latter has the same dielectric constant ¢ as the
helix core. In reciprocal space, the electrostatic potential
of such a helix is

(k) = 2 eqiF (k) G(K), (26)

where e is the elementary charge, eq; is the actual (frac-
tional) charge of each subset i of charged centers on the
helix (e.g., negatively charged carbonyls or positively
charged amides on the a-helix backbone), F;(k) is the
corresponding structure amplitude defined in Sec. II
[where the n,(r) in Eq. (2) are the number densities of
the charged centers], and G(k)=4m/ek? is the Coulom-
bic Green’s function for a uniform dielectric medium.

Because the F;(k) factors for most helical charge pat-
terns have a fairly simple form (Sec. II), the inverse Fou-
rier transforms can usually be performed analytically
and the calculation of the electrostatic potential ¢(r) in
real space is straightforward. However, some important
conclusions about this potential can be made directly
from Eq. (26) without any calculations.

First of all, F;(k) is nonzero only at the values of k
corresponding to the x-ray-diffraction maxima. Hence
the x-ray-diffraction pattern of a helix can often be used
to deduce information about the spatial dependence of
the electrostatic potential created by this helix (Korny-
shev and Leikin, 1998a).

Second, for zwitterionic helices 2,eq;F;(0)=0. More-
over, whenever the charge pattern follows the helical
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symmetry of the long molecule, 2ez,F;(k)=0 for k,<g,
g=2m/H. As a result, the electric field near such a helix
varies periodically along its surface and decays exponen-
tially away from the surface with a characteristic length
less than H/27 (Kornyshev and Leikin, 1997, 1998a).

Any long a-helix satisfies these criteria, and the elec-
tric field near its surface does not resemble the field cre-
ated by a dipole. The notion of a large a-helix dipole
perpetuated by many biochemistry and biophysics text-
books [see, e.g., Voet and Voet (1995)] is at best mislead-
ing. In general, the electric field of a helical (or any
other) periodic array of parallel dipoles becomes remi-
niscent of the electric field of a single dipole only at
distances larger than the overall size of this array. At
such distances the field is usually so weak that it be-
comes irrelevant. Although an a-helix does respond to a
slowly varying external field (at the scale of its size) as if
it were a large dipole, it is incorrect to speak of molecu-
lar interactions involving a-helices as dipolarlike inter-
actions.

In reality, the electric field created by a long, straight,
ideal a-helix in a nonpolar medium or inside a protein
can be calculated from Eq. (26) exactly. Except in the
immediate vicinity of the ends of the helix, this potential
is given by

ep(r)/kgT ~ (81p/l.)K,(gr)I (ga)cos(gz — ¢),  (27)
where again, now for the a-helix, g=27/H. Here
lg=elekyT (28)

is the Bjerrum length in the dielectric (e.g., Iz=~300 A
when £=2), a=2.3 A is the helix radius, H~5.4 A is
the a-helix pitch, K; and /; are the modified first-order
Bessel functions, and /. is a length defined by /.=h/|q,
with £ the axial rise per carbonyl or amide group. In the
expression for /., g,=~ +0.5 are the fractional charges on
backbone carbonyl (-0.5) and amide (+0.5) groups, and
the axial rise is A= H/3.7. The coil of carbonyls is shifted
axially from the coil of amides by =~H/2 (Pauling and
Corey, 1951; Chothia et al., 1981). The cylindrical coor-
dinates (r,z,¢) are coaxial with the helix axis and the
point (r=a,z=0, $=0) is selected to coincide with one of
the positive charges. Although the field decays with the
characteristic length H/27~0.86 A, it remains signifi-
cant (e¢>1 kgT) up to r—a=3.8 A away from the helix
surface, suggesting that it should be an important force
in protein folding.

B. Charged cylinders in an electrolyte solution

Poisson-Boltzmann (PB) and strong-coupling (SC)
theories. The electrostatics of highly charged molecules
in an electrolyte solution is more complicated. Even for
homogeneously charged cylinders, pertinent models of
charge screening are still debated in the literature. The
most conceptually simple and therefore popular ap-
proach used to calculate the electrostatic potential ¢(r)
inside an electrolyte solution is based on the PB equa-
tion
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eq;¢(r)

77_Pext(r)
kgT

VZe(r) = -4 - 47722 ngq; exp(— ), (29)
L

where pg(r) is the density of fixed, external charges and

eq; and n; are the charge and average number density of

electrolyte ions of each kind, respectively.

The PB theory is a mean-field theory in which the
density of electrolyte ions depends on the mean-field
potential ¢(r) through the Boltzmann exponent. Its ap-
plication is therefore limited to cases when fluctuations
of electrolyte ion density and ion-ion correlations are
not important (Kirkwood, 1934). For instance, it has
long been argued that the PB theory should not be used
for the calculation of the free energy of a small, spheri-
cal ion in an electrolyte solution, which is determined
predominantly by ion-ion correlations. The PB theory is
not entirely self-consistent in this context (Onsager,
1933; Bockris and Reddy, 1970; Oldman and Myland,
1994; Schmickler, 1996; Kornyshev, Spohr et al., 2002).
Nevertheless, it is widely used in biophysics literature
exactly for this purpose (e.g., to calculate the electro-
static energies of ionic groups on protein surfaces) (Yang
et al., 1993; Gallagher and Sharp, 1998; Misra et al., 1998;
Murray et al., 1999). Reasonable agreement of such cal-
culations with explicit computer simulations of water
and electrolyte ions near biomolecules is often attrib-
uted to fortuitous cancellation of multiple factors [for a
review, see, e.g., Sharp and Honig (1990)].

A better understanding and justification of the PB
theory were developed in its application to the counter-
ion distribution and the resulting electrostatic potential
near flat, charged surfaces (Guldbrand et al., 1984; Kjel-
lander and Marcelja, 1984, 1986; Borukhov et al., 2000a,
2000b; Netz and Orland, 2000; Moreira and Netz, 2001,
2002; Naji and Netz, 2004; Naji et al., 2005). Empirically,
the PB theory (corrected for finite ion size, e.g., via in-
troduction of a dense surface layer of water and ions)
was found to work very well near metal electrodes up to
fairly high surface charge densities and concentrations of
1:1 electrolytes. [A recent review of various models cor-
recting the PB theory for ion size, ion/water size, images
of electrolyte ions, etc., can be found, e.g., in Volkov et
al. (1998)]. Theoretical arguments suggest that the PB
theory works so well because counterion-surface corre-
lations, in the case of ions with low valence, are more
important than correlations between electrolyte ions
(Guldbrand et al., 1984; Kjellander and Marcelja, 1984,
1986). Recent arguments were obtained using advanced
field theoretical methods (Netz and Orland, 2000; Mor-
eira and Netz, 2001, 2002; Naji and Netz, 2004; Naji et
al., 2005). The partition function of pointlike counteri-
ons near a flat charged surface in a solvent described by
a continuous, macroscopic dielectric was calculated
where counterion-counterion correlations were handled
via perturbation theory. Near a surface with charge den-
sity o, the importance of these correlations was gauged
by the magnitude of the coupling parameter &,

E = qle/l(rv (30)

where



954 Kornyshev et al.: Structure and interactions of biological helices

l,=el2mlg|oq| (31)

is sometimes referred to as the Gouy-Chapman length.
The PB theory was argued to be exact at E—0, but
numerical estimates suggested that it should remain a
reasonable approximation up to E~1 (Guldbrand er al.,
1984; Naji et al., 2005). A solution for the counterion
distribution was also obtained in the strong coupling
(SC) limit of E — = but not for intermediate values of =
(Moreira and Netz, 2001, 2002; Naji et al., 2005).

Computer simulations of counterion distributions
near highly charged, rodlike macromolecules like DNA
at small electrolyte concentrations demonstrated good
agreement with predictions of the PB theory (LeBret
and Zimm, 1984a; Das et al., 1997; Deserno et al., 2000;
Deserno and Holm, 2002). For such molecules, however,
it is worthwhile to exercise a certain degree of caution in
applying the PB theory and interpreting the results.
Consider, for example, the counterion distribution
around DNA in 0.15M 1:1 electrolyte solution (hereafter
referred to as a physiological solution). The radius of a
DNA molecule is =9 A, and its surface charge density is
approximately one elementary charge per 100 A% so
that [,~23 A and E=3 ([z=7 A in water). Strictly
speaking, this value of the coupling parameter might be
too large for an accurate description of the counterion
distribution within the PB limit and too small for the SC
limit (Moreira and Netz, 2001, 2002; Naji and Netz, 2004;
Naji et al., 2005). Furthermore, formal application of the
PB theory to DNA modeled as a homogeneously
charged cylinder suggests that over 50% of counterions
are located at distances less than the van der Waals di-
ameter of water (~3 A). At such atomic distance scales,
not only the mean-field approximation for counterion
density, but also the assumptions of macroscopic electro-
statics built into the PB and the SC theories are likely to
break down. In particular, the dielectric response of wa-
ter is expected to be nonlocal (Kornyshev, 1981, 1985;
Bopp et al., 1996, 1998; Medvedev, 2004, and references
therein), nonlinear (Ruff and Liszi, 1985), or both
(Kornyshev and Sutmann, 1998; Fedorov and Korny-
shev, 2007), and it has been observed to behave anoma-
lously in some experimental systems (Mertz and Krish-
talik, 2000; Mertz, 2005). Therefore it is difficult to
justify utilization of the PB theory with the macroscopic
value of solvent dielectric constant to describe the dis-
tribution of electrolyte ions within this layer.

However, practical applications of the PB theory usu-
ally rely on the electrostatic potential outside rather
than inside the dense layer of water and ions at the sur-
face. Effectively, the comparison of PB predictions with
computer simulations and experimental measurements
of the counterion profile is always done at such dis-
tances, suggesting why the PB theory appears to work so
well. For instance, the counterion distribution around 25
base pair DNA fragments was recently evaluated by
anomalous x-ray scattering (Das et al., 2003) at scatter-
ing vectors |k|/27 from 0.01 to 0.04 A~' (which corre-
sponds to a true resolution in real space of 2/|k|
>25 A). The authors were able to detect a small differ-
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ence in the scattering profiles from divalent and
monovalent counterions associated with the change of
the Debye screening length roughly from 2.9 to 4.9 A,
but this difference was at the limit of the experimental
accuracy. Such resolution is clearly not sufficient to
probe the counterion distribution within the first few
angstroms of a DNA surface. The agreement of the
measured scattering profiles with the PB theory (Das et
al., 2003) indicates only that the theory does a reason-
able job of predicting the tail of the counterion distribu-
tion.

Debye-Hiickel (DH) and Debye-Hiickel-Bjerrum
(DHB) theories. Outside the layer where the potential
energy of counterions eqe exceeds kzT (the nonlinear
screening layer), the PB equation can be reduced to the
simpler DH equation

V2(r) = — dmpex(0)/e + 15 (r), (32)
where
Ky = \p= (477132 niq?)‘”z (33)

is the Debye screening length. At physiological salt con-
centrations, the thickness of the nonlinear layer is often
so small that the DH theory is applicable everywhere
outside the dense layer of water and ions at the surface.
For example, this layer is close to the diameter of
charged phosphate groups on DNA and smaller than the
roughness of the DNA surface.

The simplicity of the DH theory based on this equa-
tion, however, is not its only advantage. With corrections
for ion size, the DH theory gives accurate predictions
for ion solvation energies and activity coefficients up to
physiological concentrations (Harned and Owen, 1950).
Its modification accounting for the formation of Bjerrum
ion pairs (DHB theory) has been successfully applied in
studies of Coulomb criticality (Fisher, 1994) and various
problems in colloid science (Medina-Noyola and Mc-
Quarrie, 1980; Khan et al., 1987; Lowen et al., 1993; Den-
ton, 1999; van Roij and Hansen, 1999a, 1999b; Likos,
2001). Furthermore, a calculation of electrostatic poten-
tials in a nanosized gap between two electrodes (Korny-
shev and Kuznetsov, 2006) demonstrated that limitations
on counterion density due to the finite size of ions
(Borukhov et al., 2000a, 2000b) almost entirely compen-
sate the nonlinear response of the counterion atmo-
sphere, resulting in a potential distribution that looks
very much like the one predicted by the linear DH
theory.

Counterion condensation theory. For long, highly
charged, rodlike polyelectrolytes in salt solution, the
treatment of ions condensed at the surface as part of the
renormalized surface charge, as well as a description of
the more dilute counterion atmosphere within the DH
theory were pioneered by Manning (1969). This descrip-
tion was used later in many applications of polyelectro-
lyte theory (Oosawa, 1971; Manning 1978, 1984; Frank-
Kamenetskii et al., 1987). The idea that a highly charged
linear polyelectrolyte retains (condenses) some counte-
rions even at infinite dilution was initially formulated by



Kornyshev et al.: Structure and interactions of biological helices 955

Manning based on a simple argument. The potential cre-
ated by an infinitely long, infinitely thin, straight,
charged line in a salt-free medium depends on the dis-
tance R from the line as (2e/&l.)In R, where e/, is the
absolute value of the linear charge density. As pointed
out by Onsager, for [.<[p the partition function of a
counterion in this potential diverges, suggesting instabil-
ity and counterion condensation onto this line (Man-
ning, 1969). For a long, charged cylinder of a finite ra-
dius a, however, a more rigorous argument is as follows.
When a fraction 0 of the charge is neutralized by coun-
terions condensed within a narrow region close to the
cylinder surface, one can calculate the partition function
and obtain the corresponding free energy of confine-
ment for a single ion within the cylinder of radius R.
When R>a, for monovalent counterions, this free en-
ergy is given by

F(R)=Fy—2kpT[1-(1-0)lp/l.]In(R), (34)

where F is independent of R. Additional counterion
condensation continues as long as the free energy de-
creases with decreasing R, until equilibrium is estab-
lished at

Oyy=1—1115. (35)

Since Eq. (34) only requires R to be much larger than
the cylinder radius a and the thickness of the confine-
ment layer, it reveals that condensed counterions are lo-
calized somewhere close to the cylinder surface, but it
does not specify where. The degree of counterion con-
densation within this layer may be calculated within the
counterion-only PB model (Alfrey et al, 1951; Fuoss
et al., 1951; LeBret and Zimm, 1984b). While such a cal-
culation reproduces the result for 6, it is less rigorous
because it is based on the mean-field approximation.

In dilute electrolyte solutions (Ap>a), one can still
speak of counterion condensation in similar terms. How-
ever, in biology and in most practical studies of biologi-
cal macromolecules, A\p~a or smaller. For instance, the
Debye screening length in physiological solution (Ap
~7 A) is smaller than the radius of the DNA molecule
and the average distance between fixed charges on the
DNA surface. It is comparable to the size of charged
phosphates and the roughness of the surface. Under
such conditions the physics of counterion condensation
changes. Nevertheless, counterions are still retained at
the surface of DNA. But counterions are no longer con-
densed by the long-ranged, logarithmic tail of the elec-
trostatic potential. Instead, they are located directly at
the surface inside deep and narrow potential wells cre-
ated by exponentially decaying electric fields near dis-
crete, fixed surface charges. In other words, they are
adsorbed on the surface. And so the counterion distri-
bution may be separated into a surface layer considered
as part of the surface charge and a diffuse layer de-
scribed within the DH theory.

The latter way of thinking about counterion conden-
sation permits application of many powerful methods
developed to describe adsorption, as well as allowing
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one naturally to account for chemical specificity, which
plays a crucial role in biology. For example, monovalent
cations exhibit preferential binding to DNA in the fol-
lowing sequence (Bleam et al., 1980; Denisov and Halle,
2000):

NH;" > Cs* > K" > Li* > Na*.

This sequence does not correlate with the expected ef-
fect of ionic radius on electrostatic interactions or hydra-
tion. Instead, it indicates chemical specificity of ionic
binding, such as the preferential binding of NH;" with
DNA via its ability to form hydrogen bonds with the
phosphates. [More detailed discussions of other aspects
of counterion condensation, applications of the theory,
and its successes and problems can be found, e.g., in
Frank-Kamenetskii et al, (1987), and references
therein.]

Recent developments in the theory describe correla-
tions between multivalent counterions on a highly
charged surface [reviewed by Grosberg et al. (2002)].
Briefly, in the strong-coupling limit (E~3Xx10* or
larger), condensed counterions might form a two-
dimensional (2D) Wigner crystal (Rouzina and Bloom-
field, 1996; Shklovskii, 1999a, 1999b; Grosberg et al.,
2002). For DNA-like surface charge densities, this would
require |g|>10. However, it was argued that short-range
correlations between counterions might already become
significant for |g|=3. Condensation of such counterions
can lead not only to complete neutralization but also to
reversal of the surface charge (Grosberg et al., 2002). On
a cautionary note, however, complete charge neutraliza-
tion and reversal can also be caused by hydrogen bond-
ing or other “chemical” interactions of counterions with
the surface. For instance, suspected 2 DNA overscreen-
ing (charge reversal) (Pelta, Durand, et al., 1996; Pelta,
Livolant, and Sikorav, 1996; Raspaud et al., 1998, 1999;
Saminathan et al., 1999) by spermine and spermidine
might be caused by their hydrogen bonding to phos-
phates and bases (see below). The only commonly used
DNA counterion that might be subject to the strong-
coupling conjecture is CO[NH3]63+, but it is also capable
of hydrogen bonding and it does exhibit chemical pref-
erence for GC base pair binding in the major groove
[Fig. 1(b)] of DNA (Deng and Bloomfield, 1999; Oua-
meur and Tajmir-Riahi, 2004).

C. Counterion condensation and adsorption on DNA

Detailed experimental studies and computer simula-
tions have revealed evidence of specific adsorption at
sites determined by the DNA structure and sequence for
virtually all cations. Some preference for adsorption in
the minor groove [Fig. 1(b)], particularly at AT base
pairs, was found even for Na*, which exhibits the weak-
est chemical specificity both in experiment (Hud and

’An alternative, interpretation of the experimental data that
does not involve charge reversal was suggested (Yang and Rau,
2005). For a more detailed discussion see Sec. VII.A.
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Feigon, 1997; Shui, McFail-Isom, et al., 1998, Shui, Sinas,
et al., 1998; Hud et al., 1999; McFail-Isom et al., 1999;
Stellwagen et al., 2001) and in simulation (Beveridge and
McConnell, 2000; Hamelberg et al., 2001; Korolev et al.,
2002; Rueda et al., 2004). Clear evidence of preferential
minor groove binding was obtained for Rb* and Cs*
(Tereshko et al., 1999; Woods et al., 2000). Divalent Ca*
and Mg>* were found to bind directly between phos-
phates on phosphate strands and in the minor groove
(Grzeskowiak et al., 1998; Minasov et al., 1999; Tereshko
et al., 1999; Egli, 2002). However, some evidence of their
binding to bases in the major groove was also reported
(McFail-Isom et al., 1998; Shui, McFail-Isom et al., 1998;
Chiu and Dickerson, 2000; Kielkopf et al., 2000). Due to
their electron d orbitals, transition-metal ions, e.g., Mn?*
and Cd**, exhibit much stronger preference for major
groove binding, particularly at the N7 atom of guanine
(Clement et al., 1973; van Steenwinkel et al., 1981; Gra-
not and Kearns, 1982; Saenger, 1984; Duguid ef al., 1993;
Froystein et al., 1993; Moldrheim et al., 1998; Davey and
Richmond, 2002). Binding of some transition-metal ions,
e.g., Cu®*, in the major groove becomes so strong that
they severely distort DNA (Duguid et al., 1993). Triva-
lent metal ions, e.g., AI** or Fe3*, might have several
oxidation states, catalyze chemical reactions affecting
DNA, and/or have such dramatic effects on DNA struc-
ture (see, e.g., Karlik et al., 1980) that only large and
more inert metal complexes (such as CO[NH3]63+ dis-
cussed above) are commonly used in DNA studies
(Bloomfield et al., 2000).

The DNA charge in cells is neutralized primarily by
polycations, including polyamines (e.g., spermine and
spermidine are present in cells in millimolar concentra-
tions) and basic polypeptides (e.g., protamine and tails
of histone proteins). The distance between charged
groups on such cations is usually larger than 5 A. This is
comparable with the DNA radius, the distance between
phosphates on the DNA surface, and the Debye length
in physiological solution. As a result, polycations cannot
be modeled as point charges. Present-day strong-
coupling theories clearly cannot be applied to their in-
teraction with DNA. Furthermore, an important feature
of their interaction with DNA is that hydrogen bonding
exists between their amine groups and oxygen atoms on
the phosphates and bases, potentially resulting in a large
chemical contribution to the binding energy (Feuerstein
et al., 1986, 1990). Yet possible locations of bound poly-
cations have not been firmly resolved. For instance, the
majority of experimental and molecular simulations sug-
gest preferential binding of spermine in the major
groove (Drew and Dickerson, 1981; Feuerstein et al.,
1986, 1990; Shui, McFail-Isom, et al., 1998, Shui, Sines, et
al. 1998; Ruiz-Chica et al., 2001a; Ouameur and Tajmir-
Riahi, 2004), but some evidence of its binding in the
minor groove, particularly at high bulk concentrations,
has been reported as well (Bryson and Greenall, 2000;
Korolev et al., 2001; Ruiz-Chica et al., 2001b).
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D. Charged helix in an electrolyte solution

The role of the helical pattern of fixed charges in the
electrostatics of a DNA helix in solution was first dis-
cussed in application to the Manning theory of counter-
ion condensation (Soumpasis, 1978). It was further in-
vestigated by, for example, Wagner et al. (1997); and
Allahyarov and Lowen (2000), and its contribution into
the torsional elasticity of DNA was estimated
(Mohammad-Rafiee and Golestanian, 2004).

An exactly solvable, analytical model systematically
incorporating structure-dependent patterns of fixed mo-
lecular charges and counterions was developed by Ko-
rnyshev and Leikin (1997, 1999). Within this model the
molecular fixed charges and counterions within the non-
linear screening layer are described explicitly as discrete
charges, while the field created by them is analyzed
within the DH theory.

Consider, e.g., a highly charged (/.<Iy), long, ideal,
right-handed helix with a cylindrical, water-
impermeable, dielectric core. In reciprocal space, the
electrostatic potential created by such a helix can again
be described by Eq. (26) with an effective Debye-Hiickel
Green’s function

G(k) = 4mle(k* + k), (36)

which accounts for screening by the electrolyte and
counterions outside the nonlinear screening layer.3 We
should also use a structure amplitude FZT (k) that includes
fixed charges, condensed counterions in the nonlinear
screening layer (not treated as part of the DH ion atmo-

3Although this is not a rigorously justified procedure near
interfaces, the permittivity € in Eq. (36) may also be attributed
a k dependence. This dependence accounts for nonlocal dielec-
tric screening and is related to the short-range correlation ef-
fects in water. The dielectric function e(k) reaches its macro-
scopic value 80 at k— 0, but it may be quite different at finite
k. Unfortunately, (k) has never been directly measured for
water or any other liquid. But theoretical calculations, simula-
tions, and indirect neutron-scattering data suggest (cf., e.g.,
Bopp et al., 1996, 1998: Young et al., 1998; and references
therein) that at small and moderate k, e(k) of water could be
substantially smaller than 80, whereas at higher k it changes
sign through a divergence (+%—conditions of thermodynamic
stability allow only values of (k) >1 or &(k) <0; Dolgov et al.,
1981). This leads to an anomalously high but finite value of the
response function x(k)=1-1/e(k) with a maximum (the so-
called overscreening resonance) located at 27/3 A=l At k
— oo, the response tends to zero, so &(k) — 1. Thus the mode of
dielectric response depends on the characteristic wave vectors.
This determines whether we deal with macroscopiclike screen-
ing, reduced screening, or anomalously large screening. For
these systems the wave vectors are smaller than the character-
istic wave vectors of the overscreening resonance, so that one
might expect a reduction of the effective dielectric constant
leading to an enhancement of the interactions (Sec. V). The
nonlinear response to the electric field close to the charges, as
well as perturbation of water structure by the mere presence of
the macromolecules, may, however, complicate the resulting
response.
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sphere), and image charges induced by the fixed charges
and condensed counterions at the surface of the dielec-
tric core. F,T (k) is described by Eq. (2) where n/(r)
should be replaced with niT (r) so that eq,-niT (r) includes
the total charge density from all contributions discussed
above.

Provided that the fixed charges and condensed coun-
terions follow the helical symmetry of the molecule, as
before, FlT (k) is not zero only at the values of k, and n
given by the CCV theory (Sec. II). The n,-T(r) functions
may be determined via a number of methods, such as
the PB theory, modified PB theory, functional integrals,
and so on. However, no matter how the surface charge
pattern is found, the corresponding structural ampli-
tudes can be calculated analytically and substituted into
Eq. (26) to determine the spatial dependence of the elec-
trostatic potential.

In the simplest case of a continuous, negatively
charged helix (where the helical pitch H is much larger
than the distance /& between the charge residues on the
helix, as is the case for DNA), the average potential is

b b l K
e(e(r,z,$)) —_2(1- 6)—B o(r&p)
kBT lL. KDllKl([lKD)
Ay . Ky(kr)
_ I—BE {,,—K K () cos(ne — ngz),
c n=1 n n n

(37)

where a is the radius of the helix, /. is the length char-
acterizing the axial density (e/l,) of fixed charges on the
helix ([,=1.7 A for B-DNA), and

K=K + (ng)*. (38)

Here we assumed that the dielectric constant in the core
is much smaller than in the surrounding solvent.

The first term in Eq. (37) describes the potential of a
homogeneously charged cylinder. The second term is a
sum of the “helical harmonics,” the contribution to the
potential due to the helical distribution of the charges.
The dimensionless coefficients 6 and ¢, are the effective
fraction of the helix charge neutralized by condensed
counterions (a generalized form of the Manning conden-
sation parameter ) and the nth-order helical moments
of the charge pattern, respectively. These are deter-
mined by the pattern of fixed charges and condensed
counterions in the nonlinear screening layer. General ex-
pressions relating ¢, to any given distribution n,(r) of
fixed charges and condensed counterions of species i are
available in the EPAPS Document (see Reference sec-
tion).

As an example, for DNA, if all condensed counterions
were completely delocalized with no preference for
phosphate strands or grooves, ¢, would be entirely de-
termined by the fixed phosphate charge pattern and
given by
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{n == COS(n &s) s (39)

where ¢,~0.4 is the azimuthal half-width of the nar-
row groove, such that ¢{;=0.31, {,=-0.81, and so on.
Since the modified Bessel functions K, decrease expo-
nentially with an increasing argument, in most cases the
sum can be truncated after the first one or two helical
harmonics. For DNA, the first two harmonics have to be
included because of the small value of ¢; as compared to
that of ¢, but all higher harmonics may be neglected.

When ions are assumed to be bound preferentially to
certain sites on the DNA surface, {, may be approxi-
mated, e.g., by (Kornyshev and Leikin, 1999)

{u=F10+f(=1)"0- (1= fs6)cos(ngy), (40)

where f|, f,, and f; are the fractions of adsorbed counte-
rions localized in the minor groove, major groove, and
on phosphates, respectively. As 1-f;—f,—f5 is the frac-
tion of adsorbed counterions that are delocalized on the
DNA surface, the limiting case of Eq. (39) is retrieved
by putting fi=f,=f3=0. Note that this approximation,
Eq. (40), assumes that counterions follow the helical
lines running through the center of the grooves or phos-
phate strands in a continuous fashion. This approxima-
tion does not take into account discreteness of adsorbed
counterions, but it conveniently represents the main
classes of adsorption sites. (The finite size of the ions can
be easily introduced here through corresponding form
factors.) We utilize this simple counterion adsorption
model in later sections when discussing specific effects of
counterions known to exhibit significant chemical pref-
erences in binding at different locations on the DNA
surface.

From Egs. (37) and (38), the potential of a charged
helix is found to conform to that of a homogeneously
charged cylinder only when (i) the molecular charge is
relatively small (I.=1[y) so that just a small fraction of it
is neutralized by counterions (#<1) or (ii) the helical
pitch of the molecule is small compared to the Debye
screening length (H/27<<\p). For DNA in physiological
solution, neither of these two conditions is satisfied. The
helical harmonics in the potential of DNA can be ne-
glected only at very large distances. When the DNA
charge is completely neutralized (e.g., due to chemisorp-
tion of such counterions as spermine or spermidine), the
helical harmonics entirely determine the potential at any
distance.

E. Summary and comments

At distances smaller than or comparable to the helical
pitch H, the electrostatic potential created not only by
zwitterionic helices but also by highly charged helices is
very different from that of a charged line or a charged
cylinder. The pitch is one of the natural length scales of
the charge distributions on these objects. The other per-
tinent length scale is the axial rise per unit charge /.. The
latter determines the extent of counterion condensation
but not the profile of the potential created by the mol-
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ecule. The difference is crucial. For instance, H=34 A
while /,=1.7 A for DNA. Because /. is so small (<lp),
most of the DNA charge is always neutralized by con-
densed or adsorbed counterions within a very thin sur-
face layer. But, because H is so large, the electrostatic
potential created by DNA is significantly different from
that of a charged cylinder at almost all distances relevant
for the biology or the physics of DNA aggregates. Ignor-
ing the structure of DNA, one can study some important
phenomena, such as Manning condensation, but one
may miss physics that is equally as or even more impor-
tant for understanding a number of properties of DNA.

V. PAIR INTERACTIONS

The interaction between rodlike macromolecules is
experimentally studied primarily in multimolecular as-
semblies (Secs. VI and VII). However, the theory of pair
interactions is the first crucial step to understanding the
physics of assemblies. Significant efforts have been made
to develop such a theory by utilizing different theoreti-
cal and computational approaches. In retrospect, it is
not surprising that the main differences in the different
results reported can be traced to different approxima-
tions and assumptions made to describe the patterns of
fixed charges and condensed counterions at molecular
surfaces. Because the structural approach sketched in
Secs. IV.A and IV.D does not need necessarily a priori
assumptions about these patterns, it is probably best
suited to systematically analyze the reported results and
understand them within a universal theoretical frame-
work.

We first summarize the ideas behind this approach
and outline their application to the calculation of pair
interaction potentials. The energy of electrostatic inter-
action E between two rods v,u (=1,2) can be directly
related to the structure amplitudes for the pattern of
charges at their surfaces by representing the potential
¢(r) and the density of fixed charges and condensed
counterions p(r) through their Fourier transforms [Eq.
(26)]. Namely, the interaction energy is given by

E(R)=&(R) - &(»), (41)

where R is the distance between molecular axes and

1
=3 f ¢(p(r)d’r

27Te
8221]

v,u=1 ij

TV
Fi Fﬂ( k)d3k (42)

Here F[-T"’(k) is the structure amplitude for fixed and im-
age charges and condensed counterions at the surface of
molecule v, while F#(-k) is the structure amplitude only
for fixed charges and condensed counterions. This quan-
tity, in contrast to F,T (k), does not include image
charges. Both F;*“(k) and Ff(-k) may depend on the
separation between molecules.
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Equation (42) assumes the macroscopic ¢ and utilizes
an effective Green’s function from the DH theory in the
bulk electrolyte solution, but it is not a mean-field ap-
proximation. Instead, it explicitly accounts for con-
densed counterions through their structure amplitudes.
The counterions’ positions, which determine FIT (k) and
F}'(-k), may be self-consistently found through the mini-
mization of the total free energy of the counterion sys-
tem. Utilizing approximations for the counterion atmo-
sphere, one may find forms for these structure
amplitudes that recover the results of either the nonlin-
ear PB or the modified PB theories. Similarly Eq. (42)
can reproduce the results of theories incorporating
counterion fluctuations and correlations at any value of
the coupling parameter.

As for image charges, they must be found from the
boundary conditions on both dielectric cores, and gener-
ally will comprise an infinite series of images. However,
the latter may be truncated at the second term in the
interaction potential sum [see Eq. (43)] if the interaxial
separation between the two cores is larger than the De-
bye length (Kornyshev and Leikin, 1997).

The idea proposed by Kornyshev and Leikin (1999) is
to utilize the symmetry of cylindrical and helical charge
patterns, which leads to only a few pertinent peaks in
(FiT”’(k)F]’-’“(—k)). This symmetry allows one to calculate
the integral in Eq. (42) and express the mean force*
—(dE(R)/dR), the mean interaction energy (E(R)), and
other thermodynamic variables through the cylindrical
and/or helical harmonics of the fixed charge and coun-
terion density n,(r) of each molecule (e.g., # and ¢, in-
troduced in Sec. IV.D). These parameters can be re-
duced to weighted integrals of the azimuthal and axial
Fourier transforms of #,(r) for any distribution of coun-
terions at the molecular surface, including those that ex-
tend away from the surface (Kornyshev and Leikin,
1999). This allows one to understand the relationship
between the thermodynamic variables and molecular
structure and surface charge patterns without any addi-
tional approximations.

Sometimes this is all that is needed to understand the
physics of an observed phenomenon. We recall that the
most important parameters of the structure of a helix
(e.g., pitch and axial rise per residue) are extracted from
x-ray experiments through the selection rules for the av-
erage structure factors (Sec. II). Similarly, some param-
eters of intermolecular interactions are also determined
by the same selection rules for the average charge den-
sity. These parameters can be directly deduced from the
symmetry of molecular charge patterns without any ad-
ditional calculations (Kornyshev and Leikin, 1998a).

When necessary, # and ¢, introduced in Sec. IV.A
(and/or pertinent charge density harmonics due to the
discreteness of effective surface charges) can be calcu-

“Differentiation of the free energy JF with respect to a ther-
modynamic variable 7 [such as the calculation of the force
—dF(R)/dR] is performed with dF/dn=(d€/dn) (Landau and
Lifshitz, 1969).
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lated from the theory of choice, for example, nonlinear
PB, Wigner crystal models, adsorbed counterion models,
and so on, may be obtained from numerical simulations,
or even can be extracted from experiments. Finally, al-
though Eq. (42) defines the electrostatic energy rather
than the free energy, the calculation of the correspond-
ing partition function is often not needed to specify cer-
tain properties of the interaction (see footnote 4).

A. Parallel molecules with arbitrary charge patterns

The simplest, complete derivation of the interaction
energy was reported for two parallel molecules (Korny-
shev and Leikin, 1997, 1999). In the absence of dielectric
boundaries (zwitterionic molecules in a nonpolar envi-
ronment) the calculation is straightforward. After substi-
tution of the structure factors, Egs. (4)-(6) of Sec. II,
into Eq. (42), the integrals over K= (k,,k,) can be cal-
culated exactly [see Egs. (43) and (46) below]. For mol-
ecules with cylindrical dielectric cores in an electrolyte
solution the calculation is a bit more challenging due to
the presence of image charges. Nevertheless, this prob-
lem still has an exact solution (Kornyshev and Leikin,
1997, 1999). In general, the energy of interaction be-
tween two similar molecules (in electrolyte solution,
separated by a layer of water larger than )\D:K;}) is
given by

o 2
EMR)/L 1 *
WL 1y s dk St (k) K, (RR)
kBT 2n,m:—00 nFE =1 J -0 ’
Xe—in(<1>#+w6#’2)+im(tl>V+775,,,2)+ik162
13 &
+ E E 2 dszﬁ,ﬁ(kz)Qn,m(’?Ra Ka)
nm=—x u=1 J —w
Xei(m—n)(tbﬂ+w5“12), (43)
where
R=\ih+ k2, (44)
. L)
Qp,y) == 2 [K, j(0) K (0)]-L— (45)
]‘:_oc K] ()’)

and K)(x) and [)(x) are the derivatives of the corre-
sponding modified Bessel functions with respect to their
arguments. We should point out here that Eq. (45), for
Q,, m(x,y), is the limiting expression when the dielectric
constant of the core is much smaller than that of the
surrounding medium. This is a reasonable approxima-
tion for most macromolecules in electrolyte solution.
For the case of an isotropic medium with the same di-
electric constant as the core, we can simply set
O, m(x,y)=0, that is, there are no image charges. In Eq.
(43) L is the length of the molecules, a is their dielectric
core radius (L>a), 6Z=7,-7,, and Z, and ®, are the
axial and azimuthal coordinates of the molecule v at its
point of origin. The dimensionless coefficients S, (k,)
are independent of R and proportional to molecular
structure factors for instantaneous distributions of fixed
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charges and condensed counterions (Sec. II). Simple ex-
amples of S, (k.), when all charges and counterions are
located within a thin layer at the core surface, are given
by Eqgs. (46)—(48). More general expressions applicable
to distributions of fixed charges and condensed counte-
rions within a layer of finite thickness away from the
dielectric core are more cumbersome and are presented
in the EPAPS Document in the Reference section.

The first term in Eq. (43) accounts for the energy of
each molecule in the field created by the other molecule.
The second term accounts for image forces, i.e., for the
change in the energy of each molecule in its own field
due to distortion of the field by the dielectric core of the
other molecule. Note that such image forces are often
neglected in theories of interaction between rodlike
molecules. However, as found in earlier studies of inter-
actions between charged planar surfaces, they become
very important in the case of an inhomogeneous distri-
bution of fixed surface charges and/or in the presence of
counterion fluctuations and correlations (Kjellander and
Marcelja, 1986; Naji et al., 2005).

In the special case of a nonpolar, electrolyte-free me-
dium, there is no Debye screening and image forces are
absent, so that k=k_ and S,,,(k,)=S.7 (k.)=0. The di-
electric response of the medium and molecular cores is
determined by the same electron polarizability (e=2,
provided that all partial charges on polar groups such as
amides and carbonyls in proteins are explicitly included
into the charge structure factors). Under such conditions
the Coulombic Green’s function G(k)=4m/ek? is valid
up to a very small distance scale (large k) and Eq. (43) is
exact and can be used at all interaxial distances R up to
direct molecular contact. In the simplest case, when all
fixed charges lie on the same cylindrical surface of the
radius a, S},’fn(kz) is given by

47TlB

8% (k.) = "

m

2 qiqsiiknm),(k.a)l,(k.a),
ij

(46)

where sil’?(kz,n,m) are the structure factors defined in

Sec. II [éf. Egs. (5) and ©)]°

The formulas for S)»(k,) in an electrolyte solution
are more cumbersome due to the effect of image
charges. However, in the simplest case when all fixed
charges and condensed counterions lie within a thin
layer (much smaller than the molecular radius a and \p)
at the surface of the molecular core, S, (k) can be ap-
proximated by (Kornyshev and Leikin, 1997, 1999)

Note that the Bessel functions I,(k,a) originate from inte-
gration of J,(Ka) in Eq. (4) with the Coulombic Green’s func-
tion. Indeed, this Green’s function has a pole at K= +ik, and
I,(k,a)=J,(ik_a).
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FIG. 5. Schematic drawing of the pattern of fractional
(~0.5¢) charges on amide (+) and carbonyl (—) residues on
two interlocked a-helix backbones. The coil of carbonyls is
shifted axially from the coil of amides by =H/2 so that the
adjacent, hydrogen-bonded amide and carbonyl are axially
aligned. There are about 3.7 carbonyl and amide residues per
helical turn in each coil (H/h=3.7). ®;, ®, and Z;, Z, are the
azimuthal orientations and axial coordinates of each helix, cor-
respondingly. They are defined at the point of origin on each
helix, which is selected in the middle between the hydrogen-
bonded amide and carbonyl. The azimuthal orientation of each
helix is the angle between the x axis and the vector pointing
from the centerline to the point of origin. The relative azi-
muthal angle between the two a-helices is defined as S¢p=>;
—®,-2m(Z,-7Z,)/ H. The net charge of these zwitterionic he-
lices is zero.

47TIB
L

stk ,,n,m)

Eq‘ UV aPK oK Ga) D

Syi(k)

Here sZ}“(kZ ,n,m) are the structure factors only for fixed
charges and condensed counterions. The effect of the
image charges in Eq. (47) was taken into account by
solving the corresponding electrostatic problem (Korny-
shev and Leikin, 1997) [cf. Egs. (46) and (47)]. Complete
expressions for S, (k) at any thickness of the layer of
fixed charges and condensed counterions layer can be
found in the EPAPS Document in the Reference sec-
tion.

B. Parallel zwitterionic helices in a nonpolar environment

Consider the electrostatic interaction between back-
bones of two a-helices inside a protein (Fig. 5). Since the
a-helix backbone does not have a net charge, S, (k)
=0 at n=m=0. In this simplest case we deal with helical
structures considered in Sec. IV.A. Here we have no
counterions and only two types of charged groups, which
are oppositely charged. Using the equations given in
Sec. II, we obtain the following structure factors:
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N2 c
sk,(kz,n m) = ﬁelkz(k DHP2 2 6kz,]G gn‘sm n+JGlg»
JiJ==»
(43)

where N, is the total number for each type of charged
group, h is the axial rise per charged group, G=27/h,
and all other quantities are defined in Sec. IV.A.
The structure factors obey the following rela-
tions s1 1(k n,m)= s%z%(kz,n,m) and s12 (k NN7D))
—s2 *(k,,n,m), where the asterisk denotes complex con-
]ugatlon Then, after substitution into Eq. (47) and, in
turn, Eq. (43), we may obtain the interaction energy. At
gR>1, all harmonics except for n=+1, J=0, and j=0
may be neglected and

E(R)/L
kT

Here we introduced a phase shift between the helices,
Sp=®,—D,-27w5Z/H (cf. Fig. 5) and

iy = 16(I5/P)[1(ga)]> = 5.0 X 10* nm™!, (50)

where /. is the length per unit charge for each type of
charge group since the net charge of the molecule is
zero. Provided that their most favorable alignment (5¢
=0) is not hindered by collisions between side chains,
the two helices will lock into it. This alighment forms an
electrostatic zipper (Kornyshev and Leikin, 1999) with a
lock-in pair of negative and positive charges on oppos-
ing helices repeating every half turn (Fig. 5). The
strength of this zipper is ~(2-6)kzT/nm at R=7-8 A
(the separation between a-helices without bulky side
chains). Since the typical length of an a-helix is
~2-3 nm, this interaction might be a significant force in
protein folding, and it is not even remotely reminiscent
of the interaction between two dipoles as described in
biochemistry textbooks.

~ — iy cos(8$)Ky(gR). (49)

C. Parallel charged cylinders in an electrolyte solution

The more involved case of interactions in solution still
challenges theory. Here we give a brief overview of
known approximations, in terms of the formalism pre-
sented above.

1. Mean-field results

Within the mean-field approximation the counterion
density near a homogeneously charged cylinder depends
only on the distance from the cylinder axis, so that the
charge density structure factors in Eq. (43) are not equal
to zero only When n=m=0 and k. =0, ie., S,7 (k.)
% 800,000k, ).> The energy of interaction between two

SThis is provided that the molecules are not too close to each
other, so the condensed counterion distribution responsible for
0 may be assumed to be uniform around the surface of each
cylinder.
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similar cylinders (Kornyshev and Leikin, 1997, 1999) re-
duces to

<Eczl>/L ~2(1- 6)21_B(KO(KDR) + Qo,o(KDR»KDﬂ)>
kgT lf (KDa)z[Kl(KDa)]z ’

(51)

where 6 is determined by the radial distribution of con-
densed counterions. When condensed counterions are
localized within a thin layer da close to the cylinder sur-
face (da<<a,\p), 0 is approximately the fraction of the
molecular charge neutralized by them. An expression
for 6 can be found in the EPAPS Document in the Ref-
erence section.

The classical expression for E, derived within the
DH approximation (Brenner and Parsegian, 1974) is re-
covered from Eq. (51) by neglecting the nonlinear ef-
fects of screening (i.e., no counterion condensation so
that 6=0) and the image forces. Results corresponding
to the standard and modified PB theories are recovered
by calculating the appropriate . When the nonlinear
screening layers around the two molecules do not over-
lap, @ is practically independent of R and its calculation
is straightforward (see the EPAPS Document in the Ref-
erence section). The theory can be extended to smaller
separations as well, where 6 becomes dependent on R.
However, such cases are important primarily for multi-
molecular assemblies, where a different approach be-
comes more accurate and practical (see Sec. VI).

As one would expect, the mean-field force between
two cylinders of the same charge is always repulsive,
regardless of the surface charge density. However, under
certain conditions, counterion density fluctuations and
correlations between counterions can lead to attraction
(Kirkwood and Schumaker, 1952; Oosawa, 1968; Attard
et al., 1988; Marcelja, 1992; Barrat and Joanny, 1996;
Kjellander, 1996; Rouzina and Bloomfield, 1996;
Grgnbech-Jensen et al., 1997; Ha and Liu, 1997, 1998,
1999a; Arenzon et al., 1999, 2000; Golestanian et al.,
1999; Levin et al., 1999; Shklovskii, 1999a, 1999b; Solis
and de la Cruz, 1999; Lau et al., 2000, 2001; Diehl et al.,
2001; Golestanian and Liverpool, 2002; Lau and Pincus,
2002; Levin, 2002; Naji and Netz, 2004; Naji et al., 2004,
2005). The origin of the attractive forces can be under-
stood within the framework of Eq. (43).

2. Wigner crystal model

It is instructive to start the analysis of counterion fluc-
tuation and correlation effects from the strong-coupling
limit, when E>1 due to multivalent counterions and
large surface charge density. It was conjectured that in
this limit the energy of electrostatic repulsion between
counterions confined at the cylinder surface might be-
come sufficiently large to cause their quasicrystalline or-
dering (Rouzina and Bloomfield, 1996; Shklovskii,
1999a, 1996b). If this is true, such order will lead to
peaks in the molecular structure factors s”*(k,,n,m) at
wave numbers n,m and axial wave vectors k, of the re-
ciprocal lattice in cylindrical coordinates (see the EPAPS
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FIG. 6. Wigner crystal of ordered condensed counterions on
uniformly negatively charged cylinders. The interaction energy
is minimized when correlated counterions on one cylinder op-
pose correlation holes (negatively charged spaces between ad-
sorbed counterions) on the other. Such a configuration may
result in attraction even if there is a net charge on the cylin-
ders.

Document in the Reference section). Provided that the
size of ordered counterion clusters is large enough, the
structure factors can be approximated by the corre-
sponding & functions, and the integral in Eq. (43) can be
easily calculated. At sufficiently large surface separa-
tions, where image forces may be neglected (>\p), the
average energy per unit length between the cylinders is
then given by (see the EPAPS Document in the Refer-
ence section)

Eels(R)/L ~
— o =Eoop
ksT
~ 02 Ejjlcos(2Iny®;)
7
+ cos(2/ny®,)]
+ EJ’],J cos[jny{m— ;)
TJ

+ @1+ )nyd, + (2] - )k 6Z], (52)

where ny, is the smallest azimuthal wave number and k,
is the smallest axial wave vector of the Wigner crystal,

P 2y Koy (k7 iR) -
T TR —~. (53
c (KJ,/a) jnw(KJ,/a) (j—ZJ')nW(K]Ja)

2 7 An2.2
k7= \Kp + (j = 20k (54)

Equation (52) describes the interaction energy be-
tween two parallel uniformly charged cylinders of low
dielectric constant for arbitrary azimuthal (®; and ®,)
and axial (6Z=z;—z,) orientations of the Wigner-crystal
layers of condensed counterions on their surfaces (Fig.
6). The first term is the contribution from the interaction
between “naked” cylinders (without counterions). The
second term is the interaction of the counterion crystal
on each cylinder with the naked charge of the other cyl-
inder. The third term is the interaction between counter-
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ion crystals. The sums in the second and third terms
rapidly converge and can be truncated, retaining only
the modes j=0,+1,+2 and J,J' =0, +1.

At 0=1, the interaction energy is determined prima-
rily by harmonics with at least one nonzero index (j, J, or
J'), which are repulsive or attractive depending on the
mutual alignment of the Wigner crystals. The optimum
alignment in the ground state is obtained by minimizing
the energy given by Eq. (52) with respect to ®;, ®,, and
6Z. At this alignment, counterions on one cylinder inter-
lock with correlation holes (spaces between condensed
counterions) on the other cylinder (Fig. 6) and the net
interaction becomes attractive [as conjectured by
Rouzina and Bloomfield (1996) and Shklovskii (1999a,
1999b)]. However, this ground-state attraction may be
significantly weakened by thermal fluctuations. (The en-
ergy of a hexagonal array of cylinders with interlocked
Wigner crystals calculated at #=1 is plotted in Fig.22.
These results are discussed in the context of DNA con-
densation in Sec. VIL.B.)

The idea of attraction between two similarly charged
surfaces in electrolyte solution due to ordering of multi-
valent counterions was initially studied by Guldbrand et
al. (1984) and Kjellander and Marcelja (1984). It was
later reapplied to the problem of DNA condensation
based on a modified calculation of forces between flat
surfaces (Rouzina and Bloomfield, 1996) and rough esti-
mates of cohesion energy, but still relying on the known
properties of 2D Wigner crystals (Shklovskii, 1999a,
1999b; Grosberg et al., 2002). It was never rigorously
analyzed for the cylindrical geometry. However, unlike
the 2D geometry where a quasicrystalline (hexatic) long-
range order of counterions is possible, no long-range or-
der can exist in one dimension because of diverging ther-
mal fluctuations (Landau and Lifshitz, 1969). Local
quasicrystalline ordering of counterions in the quasi-1D
cylindrical geometry might exist (this will inevitably de-
pend upon the radius of the cylinder), but so far no rig-
orous theoretical estimates for the possible range of
such order have been reported. Numerical simulations
of cylinders with a DNA-like surface charge density
found no significant axial correlations beyond nearest
neighbors even for trivalent counterions (Deserno ef al.,
2003), calling into question the application of the
Wigner-crystal idea to interaction between two DNA
molecules in solution (we return to application of this
idea to DNA aggregates in Sec. VII).

3. Standing charge-density waves

Numerical simulations also suggest that a different
type of counterion ordering, an azimuthal standing
charge-density wave, might form (Deserno et al., 2003).
The physics of this phenomenon can be rationalized as
follows. The basic set of harmonics for charge-density
variation on a cylinder is exp(in¢+ik,z), where n and k,
are the corresponding wave number and wave vector.
Equation (43) may thus represent the energy of interac-
tion between two cylinders as a sum of interactions be-
tween such charge-density waves (CDWs). The energy
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of direct interaction between two CDWs with the same
k. at sufficiently large surface separations (>\p) in
aqueous solution is given by (Kornyshev and Leikin,
1997, 1999; EPAPS Document)

(E¢pw/L) = (= 1)™(cos(ny — me, — k,6Z))
XK,,_m(R\, KD +k ) (55)

where 6Z=z;—-2,, and z, and ¢, are the axial and azi-
muthal phases of the CDW on the molecule v. Provided
that the most favorable alignment between CDWs can
be established and is not destroyed by thermal fluctua-
tions, (-1)"cos(ngp—me¢p—k 6Z)=—1 and the two
CDWs attract each other.

It is worthwhile to emphasize the following property
of interaction between CDWs in cylindrical geometry.
The attraction between purely azimuthal CDWs (k,=0)
decays exponentially with a characteristic length equal
to the Debye length [in most cases kpR>1 and
K, _,.(kpR)>xexp(-kpR)]. As follows from Eq. (55), the
CDW-correlation attraction decays exponentially with a
characteristic length dependent on k, but not on the azi-
muthal conjugate n. In contrast, the CDW-mediated
force between flat 2D surfaces or between 1D lines al-
ways decays exponentially with the characteristic length
(k5 +k?)~12, where k is the CDW wave vector. The rea-
son for the qualitatively different interaction between
CDWs in the cylindrical geometry and 2D surfaces or
1D lines is that azimuthal correlations cannot exist for
these latter geometries. As shown throughout the re-
mainder of this review, azimuthal correlations between
rodlike macromolecules appear to be crucial in many
phenomena.

Note that the correlation between axial or mixed (k,
#0) CDWs requires axial order at distance scales much
larger than 27/kp (for k,>kp the interaction rapidly
decreases). As mentioned above, such order appears to
be destroyed by thermal fluctuations at physiological
temperature. Detailed numerical simulations suggest
that the contribution of the axial charge-density waves
to the intermolecular force between two homogeneously
charged cylinders is very small even for trivalent coun-
terions (Deserno et al., 2003). However, the correlation
between azimuthal CDWs does not require axial order
and is thus less affected by thermal fluctuations.

Overall, one might expect strongly correlated azi-
muthal CDWs to form and significantly reduce the inter-
action energy of the cylinders when (i) the cylinder di-
ameter is comparable to the average distance between
counterions, (ii) the interaction between nearest-
neighbor counterions is much stronger than kz7, and
(iii) the surface separation between the two cylinders is
comparable to the Debye length. All these conditions
seem to be satisfied for the interaction between DNA-
like cylinders in the presence of trivalent counterions.
Indeed, numerical simulations of such cylinders revealed
formation of static (standing) azimuthal CDWs, resulting
in preferential condensation of counterions between the
cylinders and intermolecular attraction (Deserno et al.,
2003).



Kornyshev et al.: Structure and interactions of biological helices 963

4. Counterion fluctuations

Even in the absence of a static counterion structure,
correlated dynamic fluctuations will still create energeti-
cally favorable oppositions between correlation holes on
one cylinder and adsorbed counterions on the other cyl-
inder. The corresponding correlation attraction was first
calculated within the Gaussian approximation in 1D
models for the density fluctuations of condensed coun-
terions (Oosawa, 1968; Barrat and Joanny, 1996; Ha and
Liu, 1997, 1998, 1999a). However, it was later pointed
out that the approximation of unconstrained Gaussian
density fluctuations leads to a wrong temperature de-
pendence of the force (Ha and Liu, 1999b; Levin ef al.,
1999). Such an approximation is valid only in the high-
temperature limit, corresponding to an ideal gas descrip-
tion of condensed counterions (Barrat and Joanny,
1996). This limit is incompatible with the counterion
condensation requirement (Levin et al., 1999). Models of
constrained Gaussian fluctuations recovered the ex-
pected temperature dependence, predicting decreasing
rather than increasing amplitude of the force with tem-
perature (Arenzon et al., 1999; Ha and Liu, 1999a).

Essentially, the physics of the force is the same as in
the Wigner crystal model, which corresponds to the
ground state of the system, but the forces are much
weaker because of the liquidlike counterion density fluc-
tuations. Note that similar forces were also calculated
for charged, flat surfaces (Attard et al, 1988), where it
was also pointed out that additional constraints must be
imposed on Gaussian fluctuations in order to recover
the correct low-temperature limit (Leikin, 1991). In both
cases—for 1D charged rods and 2D surfaces—ad hoc
models of constrained Gaussian fluctuations were used.
This reflected the inherent difficulty of describing corre-
lation functions for density fluctuations in a liquid.
While useful for understanding the underlying physics,
such models might be unreliable for predicting the
strength of the force for real systems.

On a cautionary note, it is also useful to keep in mind
that quasi-1D theories (Grgnbech-Jensen et al., 1997; Ha
and Liu, 1997, 1998, 1999a; Arenzon et al., 1999, 2000)
and simulations (Stevens, 1995, 1999, 2001) do not allow
for the possibility of azimuthal counterion density fluc-
tuations. The latter, as discussed above and indicated by
numerical simulations in the cylindrical geometry (De-
serno et al., 2003), might play a more important role than
the axial fluctuations captured by 1D or quasi-1D mod-
els. We are not aware of corresponding theories for
counterion fluctuation forces in a true cylindrical geom-
etry.

D. Parallel, rigid, ideal helices in an electrolyte solution

1. Mean-field results

One common lesson from the different models dis-
cussed above is that patterning of surface charge and
counterions might drastically change the interaction be-
tween rods. In molecules with preexisting helical pat-
terns of surface charges such effects become even more
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FIG. 7. Schematic diagram for interacting parallel DNA mol-
ecules with ideal, negatively charged double helical backbones
(phosphate strands) and counterions absorbed in the major
and minor grooves. The azimuthal @, and axial Z, coordinates
of each molecule are defined with respect to a reference cross
section as the azimuthal coordinate of the middle of the minor
groove and the height of the cross section, respectively. The
reference cross sections for the two molecules are selected
consistently so that the backbone of one molecule is com-
pletely superimposed onto the backbone of the other molecule
upon a lateral shift by R, azimuthal rotation by ®,-®,, and
axial shift by 6Z. The interaction depends only on d¢p=D,
—-®,-276Z/H. In this diagram, a value of 6¢=0 is shown,
which minimizes the interaction energy at large R by maximiz-
ing energetically favorable interactions between negatively
charged strands on one molecule and positively charged
grooves on the other molecule. The ideal helical structure of
the backbones results in the same alignment repeating with the
axial periodicity H, creating an electrostatic zipper. Unlike the
simpler zipper that locks in opposing negatively and positively
charged groups on single-stranded helices at d¢p=0 regardless
of R (cf. Fig. 5), the optimal alignment between the double
helices depends on R. The alignment with §¢ # 0 becomes en-
ergetically favorable at small R [Eq. (60)].

rich and nontrivial. At the same time, the symmetry of
helical patterns significantly simplifies their theoretical
analysis. Here, the mean-field approximation corre-
sponds to the explicit description of the helical pattern
of fixed molecular charges and the mean-field assump-
tion that condensed counterions simply follow the heli-
cal symmetry of the molecule. The corresponding theory
for ideal, rigid helices was developed by Kornyshev and
Leikin (1997, 1999).

To illustrate the main results of this theory, consider
the interaction between two ideal, identical DNA-like
double helices in electrolyte solution (Fig. 7). Now, at
surface-to-surface separations larger than \p, the coun-
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terion structure factors will not depend on R. Further-
more, the only peaks in s, (k,) important for calcula-
tion of the interaction energy are those with the smallest
values of k, and n. The weighted sum of the structure
factors for counterions and phosphates at relevant k,
and n may be written as’

Sg’#(kz) = SZ:%(kz)

_2p[(1= 08,0+ &1 = 8,018, m Ok + gn)
I (Ra)’K! (ka)K! (ka)

bl

(56)

where ¢, are the helical moments of the density of fixed
charges and condensed counterions on each molecule
introduced in Sec. IV.D.

Substitution of this expression into Eq. (43) gives the
desired result. If we take into account that at all reason-
able distances only the modes with n=0, n==+1, as well
as n=+2 are important, but all other ones can be ne-
glected (Kornyshev and Leikin, 1997), it reads

E(R
<L]£B)T2 =~ Ueyi(R) + Uimage(R) — tt1(R)cos(5¢h)

+ uy(R)cos(25¢). (57)

The first term in this energy uc(R)=(E(R)/ L)/ kgT is
given by Eq. (51). It corresponds to approximating DNA
by homogeneously charged cylinders. The second term

2
ﬁE Z

2
lc n=1

Dy, (KR, K,2)

(en) K. (ry0) P (58)

uimage(R) =

is the helical part of the image interaction of one mol-
ecule with the core of the other. The corresponding
force is always repulsive. The third and fourth compo-
nents

413 2 Ko(KnR)

“nlR) = e K () P

n=1,2, (59)

are the first two helical harmonics of the energy of fixed
charges and adsorbed counterions on one molecule in
the electric field created by the other molecule. The cor-
responding force and even its sign depend on the mutual
azimuthal alignment of the molecules 8¢ (cf. Fig. 7).
The dependence of the pair interaction potential on
the fixed charge and counterion pattern is reduced to
just three dimensionless coefficients, the effective charge
neutralization fraction () and the first two helical mo-

"The contribution of the structure factors with n#m [Eq.
(47)] can be neglected at H/h>1 (e.g., H/h=10 for DNA)
because only the harmonics with the smallest #n and m contrib-
ute to the interaction. One should not even be concerned
about small corrections arising from nondiagonal harmonics in
ideal, rigid helices since the corresponding contributions to the
energy are completely washed out by thermal fluctuations (see
Sec. VI.G). As a result, the molecules behave as if their helical
charge patterns were continuous rather than discrete (cf. the
continuous helix model in Sec. IV.D).
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FIG. 8. Electrostatic contributions to the interaction energies
given by Egs. (51), (58), and (59). The interaction energies
shown demonstrate the relative importance of including the
higher-order helical harmonic contributions in the overall in-
teraction. Here it is assumed that counterions compensate
95% of the DNA phosphate charges, i.e., #=0.95, and the he-
lical harmonics are set to £,=1. (For this calculation and sub-
sequent calculations, unless noted, the radius of DNA is taken
to be a=9.5 A and the Debye screening length is set to Kz)l
=7 A.) Note the faster decay for higher-order helical harmon-
ics.

ments of the charge pattern ({; and ¢,). For DNA, /.
~1.7 A and we expect (1-6)?></*/15~0.06 (Sec. IV.B).
Multivalent counterions, polycounterions, and chemi-
sorption can further reduce (1-6)?, and completely neu-
tralize or even invert the helix charge (Bloomfield,
1996). At the same time, we expect {,~1 regardless of
the counterion pattern (unless all of them bind directly
onto phosphate strands). For completely delocalized
counterions ¢, are determined only by the fixed charge
pattern and ¢; ~0.31 and {,=~-0.81 (Sec. IV.D). Analysis
of Eq. (40) or more general expressions for ¢, (EPAPS
Document) shows that ¢ increases upon preferential
condensation and/or adsorption of counterions in the
major groove and decreases upon preferential adsorp-
tion in the minor groove, while ﬁ increases upon any
counterion localization off the phosphate strands.

The plots of u(R), Uimage(R), 11(R), and u,(R) show
that neither of these interaction components can be ne-
glected a priori at relevant distances (Fig. 8). Further-
more, at #>0.9 (possible in the presence of divalent,
multivalent, or poly-cations), u,(R) is the weakest of the
four components in this distance range. In other words,
it appears that DNA might actually behave like the
double helix predicted by Watson and Crick rather than
the homogeneously charged cylinder of traditional poly-
electrolyte theories. Analysis of various experimental
observations based on this interaction potential seems to
confirm this conclusion (see Secs. VI and VII).

At the optimal azimuthal alignment 6¢= d¢,;, the in-
teraction described by u;(R) and u,(R) is attractive. The
attraction is caused by “interlocking” of separated posi-
tively charged grooves and negatively charged strands
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E (k,T/bp)

FIG. 9. Interaction energy between two DNA molecules with ideal helical backbones as a function of the interaxial separation R
and the relative azimuthal orientation ¢ between molecules calculated at #=0.9 and ¢, corresponding to 40%:60% minor:major
groove distribution [Eq. (40)]. The surface plot shows a bifurcation point at R~35 A, 8¢=0, resulting from azimuthal frustration
in the interaction potential due to the competition between the first and second helical harmonics (1, and u,) in Eq. (57). At larger
R, a single 8¢p=0 optimizes the energy. At smaller R, the energy is optimized at two finite d¢ given by Eq. (60). At R<25 A (not
shown), the interaction becomes repulsive due to the contribution of image forces and possible hard-core clashes between residues

on opposing molecules.

on opposing surfaces. The interlocking repeats regularly
every half turn of the helix, forming an electrostatic zip-
per (cf. Fig. 7). The periodicity of the zipper is stabilized
by the molecular structure. It is not destroyed by tem-
perature as long as the helix structure remains intact.
Counterion-correlation attraction (Sec. V.C) involves in-
terlocking of adsorbed ions and correlation holes. In
contrast to the helical electrostatic zipper, it relies exclu-
sively on counterion correlations. Thus it is more easily
destroyed by thermal fluctuations. For instance, as
shown by numerical simulations, the axial order of inter-
locked counterion-correlation pairs does not extend
much beyond nearest neighbors (Deserno et al., 2003).

The zipper formed by two double-stranded DNA mol-
ecules, however, is more complex than the zipper
formed by single-stranded a-helices. Its configuration
(optimal 8¢) depends on the interaxial distance. At large
separations all helical harmonics, except for n=1, are
suppressed so that the charge pattern on each molecule
effectively blurs into a single helix and d&¢,,;,=0. At
closer approach, however, the individual strands become
distinguishable and the helical harmonic with n=2 (for
which 8¢, =7/2) becomes more important. As a result,
the optimal alignment approaches 6¢,,;,=~ 7/2 at closest
separation. Indeed, from Eq. (57) we find that the opti-
mal azimuthal alignment is given by

5 +arcos[u;(R)/4u,(R)], R<R-:
¢min - 0, R=R.,

where R, determined by u(R:)=4u,(R:), will be re-
ferred to as the frustration point [the ratio

(60)
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u1(R+)/4u,(R+) increases monotonically with increasing
R].

The shape of the pair interaction potential is shown by
the surface plot in Fig. 9. On this plot, the frustration
point shows up as a bifurcation, at which a single poten-
tial energy valley (at R> R.) splits into two (at R<R.).
The azimuthal correlations and the spontaneous loss of
symmetry at R=R. appear to play an important role in a
variety of phenomena observed in DNA aggregates
(Sec. VI).

2. Counterion correlations and fluctuations

As suggested by the studies of pointlike counterions
condensed onto homogeneously charged cylinders (Sec.
V.C), the effects of correlations and fluctuations are ex-
pected to become strong when the counterion charge is
|g|=3. In the context of biologically relevant interac-
tions between helices, such counterions are not common
(Sec. IV) so that the corresponding effects have not been
carefully explored yet. For instance, the only reasonably
pointlike =3+ counterions commonly used in DNA
studies are cobalt-amine complexes. The latter are fairly
large spheres that bind extremely specifically to certain
sites on DNA (Secs. IV.C and VII.A), and they might
not be amenable to modeling within the recently ad-
vanced counterion correlation and fluctuation theories.

It is worth mentioning that a periodic pattern of fixed
surface charges on a flat surface has a significant effect
on the pattern of condensed counterions (Moreira and
Netz, 2002), including the structure of Wigner crystal, if
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the latter is formed. But, to the best of our knowledge,
the corresponding effects of helical patterns of fixed
charges on a cylinder surface have not been explored.
Even more interesting might be a possible coupling be-
tween the helical structure and azimuthal and axial
standing CDWs. These might enhance counterion fluc-
tuations and result in the appearance of standing CDWs
even with more common divalent counterions. It is pos-
sible, for example, that the standing axial CDWs of Ba?*
observed in aggregates of actin filaments (Angelini et al.,
2003, 2005) are a product of such coupling. Develop-
ment of the theory in this context would be particularly
important.

E. Parallel nonideal helices

Motivated by experimental observations, so far the
theoretical efforts beyond the mean-field, idealized helix
model have been focused on the analysis of interactions
between nonideal DNA-like helices with sequence-
dependent structure (Kornyshev and Leikin, 2001; Cher-
stvy et al., 2004; Kornyshev and Wynveen, 2004) and ef-
fects of thermal fluctuations in the helix structure (Lee,
Wynveen, and Kornyshev, 2004) rather than density of
condensed counterions. It was demonstrated, for ex-
ample, that the sequence-dependent intrinsic twist (Sec.
II.LE) and its elastic relaxation and thermal fluctuations
have dramatic effects on DNA-DNA interactions.® In
particular, homologous (approximately or exactly identi-
cal) sequences interact differently from nonhomologous
ones (with uncorrelated base-pair sets).

Interaction between nonhomologous DNA. The non-
ideality of DNA structure leads to two related effects
discussed in Sec. II: (i) it broadens the peaks in the mo-
lecular structure factors [Eq. (16)] and (ii) it results in an
accumulating deviation of the azimuthal phase of the
helix from the ideal one [Eq. (15)]. Indeed, whereas the
interaction between ideal helices is described by the
same energy density in each cross section, and the total
energy is simply proportional to the juxtaposition
length, for nonideal helices, the total energy is a func-
tional of local values of 8¢(z):

L
E{6¢(2);R} = J E{6¢(2),R}dz, (61)
0

where E is the local energy density. In principle, it is
composed of two parts; one is the electrostatic contribu-
tion and the other is the torsional elastic energy (Sec.
I1I).

It is instructive to start the analysis of these effects
from the limit of infinite torsional rigidity (C,— %), when
they are completely determined by the base-pair se-
quence and not affected by torsional fluctuations.

8While intrinsic and thermal bending might also be important
at larger separations, their effects are not expected to be as
dramatic, at least in aggregates. Therefore these effects have
not been carefully studied yet.
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The accumulation of twist mismatch for two parallel
molecules of length L with uncorrelated base-pair se-
quences may be written as (Cherstvy et al., 2004)

([6¢(z) - 64F) = LI2\.., (62)

where 8¢°=(5¢), (- --) indicates ensemble averaging over
possible sequences, and A, is the helical coherence
length of DNA defined in Sec. IL.LE. Equation (62) is
analogous to accumulation of twist error for single non-
ideal helices [cf. Eq. (15)]. Estimates made in Sec. ILE
suggest that A.> H. Provided this is the case, we do not
need to use the structure factors calculated for nonideal
helices (Secs. ILE and IL.F). Instead, we approximate the
latter with expressions derived for ideal helices, but take
into account that d¢ slowly varies with z rather than
remaining constant. Using Eq. (57) with the z-dependent

d¢ to calculate E{64(z),R}, we find (Kornyshev and
Leikin, 2001)

E (R,{6
el(T{T(ﬁ}) =~ ucyl(R)L + uimage(R)L
L
- u1(R)f cos[ 8p(z)]dz
0

L
+ uz(R)f cos[26¢(z)]dz. (63)
0

Here the electrostatic energy E (R,{5¢}) is still aver-
aged over counterion density fluctuations but not over
possible sequences.

For identical sequences and sufficiently long uncorre-
lated sequences, we can approximate the integrals by

L
f cos[ndp(z)]dz = L cos(5¢°)

0
2
X{l —sh{l —exp(— %)]},
(64)

where we used the random-walk properties of the intrin-
sic twist angles (Sec. IL.E) and introduced a sequence
homology factor s;,. Because the intrinsic twist profile is
a unique fingerprint of a DNA sequence, s,=0 only
upon juxtaposition of identical sequences; s,~0 for ho-
mologous sequences (which are close to being identical)
and s,=1 for uncorrelated sequences. Then,

Eo(R{64}) = ES(R,L) + s,AE%S(R, L), (65)

el
where E'YR,L) is the electrostatic interaction ener
el gy
between ideal helices [Egs. (57)—(59)] and
AEG(R,L)/L

kT = ul(R)COS(5¢O)|:1 - exp(— L)]
B

4N

— u>(R)cos(25¢°) [ 1- exp( %) ]
(66)

is the recognition energy, i.e., the difference between
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the interaction energy for uncorrelated sequences and
for identical sequences (the latter equal to E). A
slightly different result for AE[ was reported by Korny-
shev and Leikin (2001) in the approximation when azi-
muthal orientations were fixed at one of the ends
[6¢(z=0)=0].

Two important conclusions follow from this analysis:
(i) two DNA fragments can recognize sequence homol-
ogy through electrostatic interactions and (ii) long, rigid,
uncorrelated sequences cannot maintain the alignment
of strands and grooves required for the electrostatic zip-
per attraction over a juxtaposition length larger than
4\.. In the latter case we lose both u;(R) and u,(R), so
that very long rigid molecules behave more like uni-
formly charged rods.

Whereas the helical symmetry of the molecules affects
the recognition law, the qualitive idea of this effect does
not depend specifically on helicity. Any pattern of posi-
tive and negative charges on a molecular surface inter-
acts more favorably with a complementary pattern on
the opposing surface.

Torsional adaptation. However, to regain an energeti-
cally favorable attraction, real molecules (with finite tor-
sional rigidity C,) can adjust the azimuthal phase shift
S¢(z) at the cost of the elastic torsional energy

Eudopt 1, (" <d5¢<z) )2
—kBT = -ff —=—8g(z) | dz, (67)

0 dz

where [,=C,/kpT is the torsional persistence length,
88(z2)=g1(z)-g,(z), and g, (z)=Q,(z)/h is the local
sequence-dependent intrinsic twist of each DNA (Secs.
ILE and II1.A). Equations (63) and (67) define the new
total interaction energy

E(R.{6¢}) = E|(R.{0¢}) + Eiors{ 66} (68)

which is affected by both the quenched disorder 8g(z),
as well as thermal fluctuations in d¢.

Minimization of this energy in the ground state yields
a nonlinear Euler-Lagrange equation (Kornyshev and
Leikin, 2001), which is reminiscent of the well-known
sine-Gordon equation (Strogatz, 1994)

d*(6¢) 2uy . 4 d
- IL: sm(&b){l - u”12 cos(5¢)} = dZ(ﬁg)
(69)

except with more complex nonlinearity and an “external
field” d(8g)/dz. Without the right-hand side, this equa-
tion has a few solutions—the trivial solution with con-
stant 8¢, kink solitons, as well as “breather” solutions
(Bishop, 1978). Breathers can be neglected in first ap-
proximation, as the energy associated with them is larger
than that of kink solitons. The solitons emerging here
may be split into two kinds: (i) large solitons (with a
variation of 277), and (ii) small solitons (with a variation
of 8¢ between the values of =zarccos[u;(R)/4u,(R)])
when the separation between helices is such that R
<R" (Kornyshev and Wynveen, 2004). Both solutions
have a higher energy than the trivial one, as long as the
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right-hand side is zero (identical or homologous se-
quences). If the right-hand side is nonzero, the balance
between these modes of response becomes a compli-
cated mathematical problem (Cherstvy et al, 2004;
Kornyshev and Wynveen, 2004). Some simplified ap-
proaches to it, however, have revealed the following
trends.

In a typical situation, the estimated probability of soli-
ton formation is low, their contribution to the interac-
tion energy is negligible, and one can assume slow accu-
mulation of 8¢ with z (Kornyshev and Wynveen, 2004).
A variational calculation of such 8¢(z) in the ground
state (Cherstvy et al., 2004) and calculations of thermal
fluctuations in 8¢ combined with Monte Carlo simula-
tions (Lee, Wynveen, and Kornyshev, 2004) have shown
that, in the simplest case of infinite juxtaposition be-
tween two molecules with uncorrelated sequences, the
accumulation of ¢ is described by

1 1
([6¢(z) — 6"y = 7\;.(5 + l_> = %hff (70)
c P e

rather than by Eq. (62). As a result,

L n2\
f cos[ndd(z)]dz ) = L COS(5¢O)6XP<— h)
0 ANt

(71)

replaces Eq. (64). Here the averaging () is performed
over possible realizations of 8g(z) as well as thermal tor-
sional fluctuations. The values of \;, and 8¢° are deter-
mined self-consistently from minimization of the result-
ing free energy. For full expressions, we refer the reader
to Cherstvy et al. (2004); Lee, Wynveen, and Kornyshev
(2004); EPAPS Document in the Reference section.
However, in the limit of strong intermolecular interac-
tion when N\, <2\, and N\, </, (small R away from the
frustration point), there is a closed-form result,

I
= \/2[u1(R)cos(6¢0) —p4u2(R)cos(25qSO)]’

(72)

and 8¢"= 8¢, Where Sy, is the optimal alignment
between ideal helices [Eq. (60)].

It is important to realize that for torsionally flexible
molecules the n+#0 helical harmonics are no longer
washed out at L >\, Instead, we see that the mean
squared deviation 8¢(z) is given by Eq. (70), where the
torsional adaptation length A, is the maximum possible
length over which there is a random-walk accumulation
of 8¢. For L >\, this process saturates, so that L in Eq.
(62) is replaced by Ay,

As follows from Egs. (70) and (71), torsional adapta-
tion limits the accumulation of the mismatch error in d¢
due to sequence-dependent nonideality. The electro-
static zipper attraction is regained, provided that the tor-
sional adaptation length is smaller than 4\.. But, at the
same time, increased torsional flexibility favors thermal
fluctuations (\,,/1,* T/ VC,), which disrupt the attraction.
Calculations based on a value of C,=3-4X107" ergcm
(Sec. III.C) showed that DNA is sufficiently flexible to
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FIG. 10. (a) Pair interaction energy and (b) corresponding recognition energy for nonhomologous torsionally flexible (C,=3
%X 1071 erg cm, solid line) and rigid (C,=%, dashed line) molecules (Cherstvy et al., 2004). The recognition energy [Eq. (66)] is
defined as the difference in the pair energy between nonhomologous and homologous (short dashed line) molecular pairs. Results
are shown for #=0.8, £, corresponding to 30%:70% minor:major groove distribution of condensed counterions [Eq. (40)], inter-
axial separation R=30 A, and a helical coherence length A~ 300 A. As shown, torsional flexibility reduces the recognition energy

but does not totally eliminate it.

allow significant torsional adaptation yet is not too flex-
ible for disruptive thermal fluctuations (Lee, Wynveen,
and Kornyshev, 2004). As a result, the net interaction
allows the formation of a well correlated, infinitely long
electrostatic zipper. It becomes attractive upon strong
counterion binding (although at larger 6), like the inter-
action between ideal helices.

Temperature-induced complementarity. An important
consequence of the balance between torsional adapta-
tion and fluctuations is that it leads to a nontrivial tem-
perature dependence of the electrostatic zipper attrac-
tion. Indeed, thermal softening reduces C, and \j,/2\.
(o V“’C,f). Therefore this dependence enhances rather than
reduces intermolecular attraction, similar to the effect
described by Leikin and Parsegian (1994). At the same
time, increasing temperature increases fluctuations
(\/1,% T/\NC)). Eventually the latter would win out and
the temperature would start reducing the attraction.
However, estimates of the corresponding coefficients
suggest that at practical conditions DNA interactions
might be in the regime of the temperature-enhanced at-
traction.

Homology recognition. While torsional adaptation sig-
nificantly reduces the difference, juxtaposition of nonho-
mologous sequences is still less energetically favorable
than juxtaposition of identical or homologous se-
quences. Double-helical DNA can still recognize the se-
quence through electrostatic interactions. The depen-
dence of the corresponding recognition energy on the
juxtaposition length is shown in Fig. 10 (Cherstvy et al.,
2004). It becomes significant compared to kzT for the
juxtaposition length over ~50-200 bp even when two
DNA molecules are separated by more than 10 A of
water.

F. Homology recognition in genetic recombination

The theory of electrostatic sequence homology recog-
nition between double-helical DNA  molecules
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prompted a highly speculative yet interesting hypothesis
that this mechanism of sequence recognition might be
involved in homologous recombination (Kornyshev and
Leikin, 2001).

It is generally accepted that understanding recombi-
nation of genes is one of the greatest challenges of the
postgenomic era (Royal Society Discussion, 2004). Re-
combination is a process in which fragments are ex-
changed between two parental copies of DNA. It is cru-
cial for evolution and genetic diversity as well as for
repair of damaged DNA. Only identical DNA regions
with homologous sequences should be exchanged or
used as a template for repair. Recombination mistakes
lead to cancer, a variety of genetic diseases, and contri-
butions to aging (Leach, 1996; Lewin, 1997). Fortunately,
such mistakes are rare. The recognition of sequence ho-
mology occurs with amazing precision. In site-specific
recombination, the exchange happens at specific, desig-
nated loci recognized by the complex recombination ma-
chinery of the cell (involving multiple proteins). In ho-
mologous recombination the exchange can occur
anywhere. It was established that at least 50-200 bp ho-
mology is required for it (Fig. 11) (Singer et al., 1982;
Rubnitz and Subramani, 1984; Watt et al., 1985; Shen
and Huang, 1986). This ensures that the fragments be-
long to two alleles of the same gene rather than different
genes. However, the mechanism of sequence homology
recognition between such long DNA fragments is still
unknown.

Textbooks tell us that “we know only one mechanism
for nucleic acids to recognize one another on the basis of
sequence: complementarity between single strands”
(Lewin, 1997). Indeed, the breakage of double-stranded
DNA and formation of single strands mediated by spe-
cialized proteins (e.g., the RecA family) is known to pre-
cede homologous recombination (Lewin, 1997). The
single strand recognizes and invades a homologous
double helix through hydrogen bond formation with
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FIG. 11. Frequency of homologous recombination as a func-
tion of the base-pair length for homologous DNA molecules.
Recombination becomes frequent only for sequences with 50—
200 base pairs. Replotted from the data of Watt et al., 1985.

bases, triggering further recombination events. But such
recognition achieves high efficiency already for eight to
ten base fragments (Hsieh ef al, 1992). If it were the
only recognition mechanism, frequent recombination
mistakes would be inevitable. A clue to another, preced-
ing recognition event was found in recent experiments
that showed pairing of homologous, intact, double-
stranded DNA, which was observed in the absence of
known recombination proteins (Weiner and Kleckner,
1994; Burgess et al., 1999). It was proposed that transient
pairing of large, homologous fragments is a first, coarse
recognition step. Double-helix breakage, single-strand
formation, and fine recognition occur as subsequent
steps. The two-step (coarse then fine) recognition pro-
cess produces a much more efficient search mechanism.

The recognition and pairing of intact double helices
was attributed to some unspecified DNA-DNA interac-
tion (Weiner and Kleckner, 1994). Since it is not site
specific and involves long stretches of DNA, it clearly
cannot be performed by proteins. But what is it? The
homologous recombination requirement of 50-200 bp
coincides with the requirement for efficient electrostatic
recognition between double helices. Thus it was specu-
lated that the electrostatic recognition might be a part of
the process (Kornyshev and Leikin, 2001). Of course,
DNA molecules in cell nuclei do not interact as they
would in a test tube. It is a rather different environment
and multiple proteins are likely to be involved. More-
over, this mechanism has not been verified even in a test
tube yet. Nevertheless, no other universal mechanisms
(not imposing any sequence restrictions, except homol-
ogy) have been proposed so far.

Having shown that the recognition energy can be a
driving force for correct pairing, and that it grows with
the increasing length of homology, we should refrain
from relating this quantity to the frequency of recombi-
nation events. Although pairing is presumably necessary,
it may not be the rate determining step. The recombina-
tion frequency may be also affected by other factors
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FIG. 12. Schematic illustration of two helices skewed at an
angle of . (a) The length of effective juxtaposition (L) rep-
resents the region of significant overlap between electric fields
created by molecules, which determines the electrostatic inter-
action energy. (b) Relative orientation of strands and grooves
within the effective juxtaposition region determines the chiral
torque between molecules. The helix with lighter markings lies
behind that with darker markings. As shown here, right-
handed helices prefer a right-handed twist to prevent crossing
of the helical strands (dashed dark lines on the back of the
front helix and solid gray lines on the front of the helix in the
rear). For cholesteric liquid crystals, such a preferred twist will
result in a right-handed cholesteric chirality. In the case of su-
percoils (or coiled coils), this preferred twist will yield a left-
handed supercoil since such a twist will lead to helices wrap-
ping around each other in the chiral sense opposite to their
own handedness.

[see, e.g., the random-walk model of Fujitani ef al. (1995)
and Fujitani and Kobayashi (1995)].

G. Skewed helices: Chiral interactions

The main motivation for developing a theory of inter-
action between nonparallel, skewed molecules (Fig. 12)
is to understand forces responsible for rather nontrivial
features of chiral phases formed by them (Harris ef al.,
1999). For homogeneously charged cylinders, this prob-
lem was first addressed by Onsager (1949) within a
Derjaguin-like approximation (Derjaguin ef al., 1987). A
rigorous solution of the same problem, within the DH
theory, was obtained about 25 years later (Brenner and
Parsegian, 1974). More recently, effects of counterion
fluctuations and correlations in the interaction between
rodlike molecules were investigated by utilizing chain
models consisting of points or spherical monomers (Lee,
Borukhov et al., 2004).

However, cylinders and 1D chains of points are not
chiral. Calculation of chiral interactions requires one to
account for molecular structure even in “zero approxi-
mation.” Some analytical results for forces between he-
lices freely rotating around their long axes have been
published [see, e.g., Van der Meer er al. (1976), Kats
(1978), and Issaenko et al. (1999)]. Such approximation,
however, cannot be used for central-force electrostatic
potentials, which require biaxial correlations in order to
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remain chiral (Harris et al., 1997). It was argued that the
approximation of freely rotating molecules does not
work so well even for dispersion (van der Waals) forces
(Issaenko and Harris, 2000).

Complete, analytical solutions for electrostatic inter-
action between skewed helices at arbitrary, fixed azi-
muthal orientations were obtained based on calculation
of the integrals in Eq. (42) (Kornyshev and Leikin, 2000;
Kornyshev, Leikin et al., 2002). The results revealed a
number of conceptually important features on chiral in-
teractions, which can be understood based on simplified
asymptotic expansions.

Consider the interaction between two ideal, long
(L>N\p,H), charged helices in electrolyte solution in the
simplest geometry shown in Fig. 12. When the skew
angle ¢ between the axes of the two molecules exceeds
V2mApR/L, the effective juxtaposition length along
which their electric fields overlap becomes independent
of L and the interaction energy can be calculated in the
limit of infinite L. The resulting expression derived by
Kornyshev and Leikin (2000) can be simplified at
V2mApR/L<|yf<1 and Rkp>1,

V27N pR , s
=~ W(U0+lﬂ7w+ 7M¢¢+ ), (73)

where \2m\pR/|sin | is the effective juxtaposition
length,

UplkgT = uey(R) — \kpl ki1t (R)cos(5¢) , (74)
T,JkT = - [g(rp)"*1(k1)*Tus (R)cos(5¢), (75)

My JkgT=[(x,R = 3)(kp)'"g*/4(k1)7?]
X1y (R)cos(5¢), (76)

and u.,(R) and u(R) are defined by Eq. (51) (excluding
the image charge term) and Eq. (59), respectively.

One intuitive conclusion from these equations is that
intermolecular attraction ({4, <0) favors parallel orienta-
tion of helices, while repulsion tends to twist them out of
energetically unfavorable parallel alignment. The re-
quirement for the attraction between skewed helices at
V27 pR/L<|y]<1 is more stringent than for parallel
ones [cf. Eq. (57)]. A slightly higher charge neutraliza-
tion by condensed counterions is needed here.

It is a little less obvious that the chiral torque
(=T;/|)) favors a right-handed skew angle (>0) be-
tween right-handed helices (g>0) and a left-handed
twist between left-handed helices at optimal azimuthal
alignment (8¢$=0), the same-handedness rule. This can
be rationalized by the simple cartoon of single-stranded
helices shown in Fig. 12(b). Such direction of the twist
favors juxtaposition of strands and grooves while the op-
posite direction favors strand crossing. However, for
double-stranded DNA helices, Eqgs. (73)-(76) can be
used only at sufficiently large R, beyond the frustration
point. At smaller R, azimuthal frustration leads to &¢
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#0. In this case, the simple same-handedness rule may
be violated and an inversion of the twist may occur
(Kornyshev and Leikin, 2000).

Finally, as predicted by Harris et al. (1997), Egs.
(73)—(76) show that uncorrelated rotations of molecules
around their long axes ({cos ¢)=0) would wipe out the
chiral interaction and would make the helices behave
like homogeneously charged cylinders. But these equa-
tions (as well as the full equations at all ¢) were derived
by neglecting the image interaction of one helix with the
core of the other one. From Egs. (57) and (58) we know
that the image interaction is not dependent on Jd¢. It
cannot be wiped out by the rotation because an image
rotates together with its source. Based on cartoons and
analogy with the derivation reported by Kornyshev and
Leikin (1997), one might expect image forces to contrib-
ute to the chiral torque. If correct, this assumption sug-
gests a rather nontrivial chiral electrostatic torque be-
tween freely rotating molecules. To determine whether
this is indeed the case, the problem of image interactions
between skewed helices has to be solved. Work in this
direction is currently in progress.

For nearly parallel helices at much smaller angles
(/< \2m\pR/L), the interaction changes qualitatively
because the effective juxtaposition length becomes
equal to the length of the molecules. In the same
asymptotic limit of Rkp>1 (Kornyshev, Leikin, et al.,
2002),

E~ LUy+ T+ P M2+ ), (77)
where

uO/kBT: I/lcy](R) — MI(R)COS(5¢), (78)

Ty/kpT = (g/k)[duy(R)/IR]cos(5¢), (79)
and

2

M — L_( &”cyl(R) _ &ul(R) COS(5¢)) . (80)
kgT 12R\ 4R JdR

Here the tendency of molecules to twist is determined
not by the sign of U, but by the nonzero value of the
chiral torque L7, and by the sign of the second moment
LM, Again, repulsive interactions will twist the mol-
ecules out of this nearly parallel alignment. Attractive
interactions will tend to keep the molecules nearly par-
allel (M,,,>0) to maximize the energetically favorable
large juxtaposition length (M, L?). But the chiral
torque will always skew them out of completely parallel
alignment. Since [duy(R)/dR]cos(8¢) <0 at optimal S,
a right-handed twist is still favored for right-handed he-
lices.

Provided that the net interaction is attractive (M,
>0) and that the equilibrium twist angle = is small
enough to be within the range of the current approxima-
tion,
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12Rg [du,(R)/dR]cos(5¢)
L2k} (duey(R)IIR — [y (R)/dR]cos(5¢))
(81)

In theory, the approximation of small ¢ should always
work for sufficiently long, rigid molecules that attract
each other (because of the L=? dependence on the equi-
librium angle). In practice, however, molecules are
rarely long enough and almost never rigid enough for
this to be the case.

H. Supercoiling

The electrostatics of supercoiling has not been rigor-
ously analyzed, although structure factors for coiled
coils were derived by Crick (1953a, 1953b) more than
50 years ago (see Sec. II.G). We will report detailed re-
sults of the corresponding study elsewhere, but this re-
view would not be complete without at least a brief,
heuristic analysis of the interaction between two helices
coiled around each other.

Consider the simplest example of two right-handed,
zwitterionic helices discussed in Sec. V.C (Fig. 5), which
form a straight coiled coil with unconstrained ends (Fig.
4). The two helices attract each other at all R and their
interaction can be described with one helical harmonic
(n==+1). The conflict between the chiral torque forcing
them out of parallel alignment and the attraction forcing
them back is resolved most efficiently when they form a
coiled coil. The same-handedness rule discussed in Sec.
V.G applies to them at all R. Thus we would expect a
right-handed twist between their axes to result in forma-
tion of a left-handed coiled coil [Figs. 4 and 12(b)].

Assume that these helices have infinite torsional rigid-
ity (to keep their twist constant) and large bending rigid-
ity B. Then, they would form a coiled coil with a large
pitch P=2m/Q. After substitution of the structure fac-
tors for such a coiled coil (Crick, 1953a; EPAPS
Document)’ into Eq. (42), calculation of the integrals,
and minimization with respect to the alignment of the
two helices, we find that at small Q the energy of the
electrostatic interaction in the coiled coil is given by

Ein(R)/L
kT

~- al(Kng) - RQéKl(Rg)> +0(0Y).

(82)

Here i, is defined by Eq. (50) and g=2w/H=const
(g,0>0 correspond to right-handed coiling, as above).
R is now not only the distance between the axes of the
two helices but the supercoiling diameter as well. For
derivation of Eq. (82) see the EPAPS Document in the
Reference section.

When QR<1, the bending energy of the two helices
in the coiled coil may be approximated by

For this calculation, one must include higher-order terms in
QO that were omitted from Eq. (21).
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Ep(R)IL  Q*R*\,
kgT 4 7

(83)

where A, is the persistence length of each helix. Assum-
ing that the pitch of the coiled coil is set by the balance
of these two energies, we find

R) 1/3
P= —277£<~—p—) . (84)
|g| i1 K1 (Rg)

As expected, Eq. (84) predicts a left-handed coiled coil
(P<0) formed by two right-handed helices."’

In real life, a-helices do tend to form left-handed
coiled coils. But we caution the reader against rushing to
compare this model with the corresponding data. In its
current form, this model was designed only to demon-
strate the nontrivial and interesting physics of electro-
static forces that cause supercoiling rather than to be
seriously compared with experiments. In addition to the
simplifying assumptions discussed above (see footnote
10), it neglects crucial steric restrictions on fitting ridges
of atoms on one helix into grooves of the other helix.
The latter, hard-core interactions clearly affect the ge-
ometry of a-helix packing in proteins (Chothia et al.,
1981). Nevertheless, the electrostatics of a-helix back-
bones can contribute as well. By neglecting the electro-
static contribution one could also “throw the baby out
with the bath water.”

I. Nonelectrostatic forces

We have focused this review primarily on electrostat-
ics since there has been less work done concerning the
relation of other types of forces to the helical structure
of molecules. Nevertheless, some reported results are
worth mentioning in the context of our discussion.

Hard-core forces are clearly important, and in many
cases their contribution might be dominant, as men-
tioned above. They are present in virtually all computer
simulations of helix-helix interactions. Even when not
described explicitly, they are generally incorporated into
analytical theories, including the theories discussed
above (distance of closest approach, self-avoidance,
water-impermeable cores, etc.). However, few models
looked explicitly at the physics of the relationship be-
tween helical hard-core structure (ridges and grooves)
and intermolecular forces (Straley, 1976).

The dispersion (van der Waals) forces are more ame-
nable to traditional theoretical analysis (Mahanty and
Ninham, 1976; Parsegian, 2005). The conceptual physics
of their relationship to the structure of helices is there-
fore somewhat better understood. Several models of the

%We presently do not know how realistic are the simplifying
assumptions which allowed us to expand the electrostatic en-
ergy in powers of Q and retain only the first-order term. To
describe any real coiled coil, it may be necessary to include
higher-order terms as well as allowing molecules to change
their intrinsic twist. Complete results will be reported
elsewhere.
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corresponding pair interaction potentials between heli-
ces have been published (Van der Meer et al., 1976; Kats,
1978; Issaenko et al., 1999; Issaenko and Harris, 2000).
However, estimates suggest that the contribution arising
from their dependence on the helical structure (e.g., into
chiral torque) might be small (Harris et al, 1999;
Issaenko et al., 1999).

Potentially more important are the hydration (struc-
tural or solvation) forces often invoked to explain inter-
actions observed in the last 10-20 A of molecular sepa-
ration between biological helices (Rau and Parsegian,
1990, 1992a, 1992b; Leikin et al., 1993, 1995, 1997; Mari-
ani and Saturni, 1996). Because water is structured by
biological macromolecules, it would be natural to expect
formation of a layer where the hydrogen bond (HB) net-
work structure relaxes from the one imposed by the sur-
face to the one characteristic of bulk solvent. Overlap of
such layers should have energetic consequences, just like
the overlap of electrostatic screening layers. Opponents
suggest that forces in excess of expectations from simpli-
fied, macroscopic electrostatic theories might be correc-
tions (although not always small), e.g., due to the non-
macroscopic dielectric response of water, lower effective
dielectric constant (see footnote 3), etc. But such correc-
tions are also likely to be one of the consequences of the
HB network in water. These two (seemingly different)
points of view are not necessarily mutually exclusive.
For instance, hydrogen bonding is an electrostatic inter-
action, but it does have a quantum flavor (proton delo-
calization) and a structural flavor (geometry of the water
molecule and the HB network). Is the energy expended
to deform a HB network a consequence of structural or
electrostatic forces? While most agree on the substance,
different people choose different words to talk about
such forces. A phenomenological approach (Kornyshev
and Leikin, 1989, 1997) based on an order-parameter
model (Maréelja and Radic, 1976) allows one to describe
such forces without specifying their nature. However,
further pursuit of this speculative approach and devel-
opment of detailed theories based on it might be prema-
ture.

J. Summary and comments

A consensus is now emerging that patterning and den-
sity fluctuations of counterions condensed on highly
charged surfaces is important for intermolecular interac-
tions. The molecular geometry and structure are even
more important because they define the patterning of
the fixed molecular charges and thus influence the pat-
terning of condensed counterions as well. The last de-
cade has brought significant advances in understanding
how to account for the molecular structure and for static
and dynamic surface charge patterns. The corresponding
theories discussed above do require more involved alge-
bra, but the effort is worthwhile. Just as the algebra of
molecular structure factors has led to the discovery of
DNA structure, understanding the relationship between
these structure factors and the charge patterns of mol-
ecules is necessary for characterizing intermolecular in-
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teractions. The challenge of fully understanding many
experiments (which are still far ahead of the theory) dis-
cussed here and in subsequent sections makes this sub-
ject particularly exciting and ripe for new developments.

VI. COLUMNAR, NEMATIC, AND CHOLESTERIC
ASSEMBLIES

Multimolecular assemblies of parallel (columnar) and
nearly parallel (nematic and cholesteric) helices are not
only model systems for studies in vitro, they also occur
in vivo. For instance, collagen helices self-assemble into
fibers. Tendons are essentially just bundles of such fi-
bers. A balance of repulsive and attractive pair interac-
tions between collagen helices determines formation
and swelling of fibers (Leikin ef al., 1995), which plays a
crucial role in tendon mechanics [see, e.g., Misof et al.
(1997), and refrences therein].

Short-range interactions between zwitterionic macro-
molecules, e.g., between collagen helices (Leikin et al.,
1994) or between backbones of a-helices (Sec. V.D), in-
volve only nearest neighbors and are generally pairwise
additive. The energy of a multimolecular, columnar ag-
gregate of such helices at given positions and azimuthal
orientations of the molecules, if they are rigid enough, is
simply a sum of all pair interactions.

In contrast, interactions between highly charged mac-
romolecules, e.g., DNA, might not be additive. Aggre-
gates of such molecules trap free counterions to neutral-
ize the charge. Trapped counterions attract water and
build up osmotic pressure, which extends throughout the
aggregate. Furthermore, the local concentration of
counterions depends exponentially on the electrostatic
potential resulting in cumulative rather than additive
contributions of molecules into the energy. We show be-
low that the ideas and results developed for pair inter-
actions between charged helices can be successfully ap-
plied to multimolecular assemblies, but the effect of the
trapped counterions will require special consideration.
Thus before going into a more complicated description
of assemblies of helical molecules, it is essential to focus
first on the theory of assemblies of homogeneously
charged cylinders.

A. Donnan equilibrium

The simplest estimate of the average electrostatic po-
tential inside an aggregate can be done utilizing the
model of Donnan equilibrium between a polyelectrolyte
“gel” and bulk electrolyte solution (Donnan, 1924; Over-
beek, 1956). This model assumes a uniform density of
fixed charges p, so that the densities of all mobile ions
are also uniform. The Boltzmann distribution relates the
concentration of each ion i inside the gel,

n;=n) exp(- qie@lkyT), (85)

to its concentration n! in the bulk electrolyte and to the
average electrostatic potential ¢ in the gel (often re-
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ferred to as the Donnan potential). The electroneutrality
condition

E qien;+p=0 (86)

then yields the following equation for the average po-
tential:

2 qien; exp(— q;e@lkpT) +p=0. (87)

In the simplest case of a 1:1 electrolyte (nozn?:ng) we
have

sinh(e@/kgT) = pl2eny. (88)

Once the concentration of polyelectrolyte charges in
the gel (p/e) exceeds the concentration of ions in the
bulk, the electrostatic potential (e¢/kzT=1) becomes a
nonlinear function of the charge density, i.e., the contri-
butions of molecules to the potential become nonaddi-
tive. For instance, at interaxial distances of 25-40 A be-
tween DNA molecules, where the most interesting (and
biologically relevant) interactions are observed, the
aqueous concentration of phosphates is ~0.9-3M (ex-
cluding the volume of DNA cores). Even if 75% of
phosphates are neutralized by bound counterions, the
concentration of the unbalanced charges (0.3-1M) is
still higher than typical ion concentrations used in ex-
periments (e.g., at physiological ion concentrations, n
=0.15M, we find p/2eny~0.7-3).

B. Cell model for charged, cylindrical rods

Nonlinear PB. The Donnan model provides a simple
illustration of how to calculate the electrostatic potential
within a dilute polyelectrolyte assembly and an estimate
of when to expect a nonlinear potential. But it cannot be
used for calculating the energy of an aggregate of paral-
lel charged rods because it oversimplifies the charge dis-
tribution. Instead, a combination of the nonlinear PB
theory with a cylindrical cell model is commonly used as
a better approximation (Alfrey et al., 1951; Fuoss et al.,
1951; Lifson and Katchalsky, 1953; Katchalsky, 1971;
Wennerstrom
et al., 1982; Zimm and LeBret, 1983; Alexander et al.,
1984; LeBret and Zimm, 1984b; Mandel, 1992). The sim-
plest form of this model describes rigid, infinitely long,
homogeneously charged rods packed parallel to each
other in a hexagonal array (Fig. 13). The hexagonal
Wigner-Seitz cell around each rod is approximated by a
cylindrical cell of the same volume. The radius of the
latter is

R,= R\\3/2, (89)

where R is the interaxial distance between the rods. The

potential ¢(r) is calculated from the PB equation [Eq.
(29)] with the following boundary conditions:

Rev. Mod. Phys., Vol. 79, No. 3, July—September 2007

© © o

FIG. 13. Cross-sectional diagram of a hexagonal columnar as-
sembly of cylinders. The hexagonal Wigner-Seitz cell (dotted
line) about each molecule can be approximated as a cylinder
with radius R,=R\3/2m, where R is the lattice spacing be-
tween nearest-neighbor cylinders.

1% 4 1%
22T ad | =, (90)
ar r=a € ar r=Rg

where a is the radius of the rod and o is its surface
charge density. In a salt-free case, the PB equation [Eq.
(29)] has a compact, exact analytical solution within this
model (Alfrey et al., 1951; Fuoss et al., 1951, Zimm and
LeBret, 1983; LeBret and Zimm, 1984b). In the presence
of salt, it is usually solved numerically (Wennerstrom
et al., 1982; Alexander et al., 1984; LeBret and Zimm,
1984a), although some analytical results have been re-
ported as well (Tracy and Widom, 1997).

Once the potential at the cell boundary ¢(R,) is
known (e.g., from a numerical solution), the osmotic
pressure of trapped counterions and excess electrolyte at
the cell boundary can be calculated as

Mo (R,) = kT, nﬁ?[exp(_ %?) - 1} . )
i B

Because the electric field at the cell boundary is assumed
to be zero, the work of compressing a cell of length L is

dW =~ Ty(R)27LRdR,. (92)

The electrostatic energy of bringing N molecules from
infinite separation to interaxial distance R is calculated
by simple integration of this work,

R
EY(R)=N f dW =-\3NL J ., (RHR'dR’, (93)

[

where Eq. (89) is used to express EE{I(R) through R
rather than R,.

Note that the thermodynamic “trick” of calculating
electrostatic interactions between uniformly charged
molecules through the osmotic pressure of counterions
(Langmuir, 1938) is quite general and is often used in
colloid science. For more detailed discussion of such
procedures and their rigorous thermodynamic justifica-
tion, see, e.g., Verwey and Overbeek (1948) and Der-
jaguin et al. (1987).

Linearized PB with renormalized charge. An alterna-
tive approach to calculating the electrostatic energy
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builds on the idea of counterion condensation. It as-
sumes that a fraction 6 of the charge of the rod is neu-
tralized by condensed and adsorbed counterions so that
the surface charge density of the rod becomes (1-6)o.
The variation of the potential outside the layer of con-
densed or adsorbed counterions is considered to be
small and the PB equation is linearized. However, unlike
the DH theory, where the linearization is made when the
absolute value of ¢ is small, here the PB equation is
linearized with respect to ¢— ¢, [o,= ¢(R,)],

4are
Vip— @) = (¢ — @) + ?2 n)qe ekt (94)
i
where

K= \/4 7TIB<E n?q?e‘qie"’slklf T) (95)

is the renormalized inverse screening length. The solu-
tion of this equation is given by

ep(r) egqs

kT kyT
+ (E ndqeteedksT / 2 njqieiee "BT)
i i

213(1 - 0) Io(Kr)Kl(KRS) + Ko(Kr)Il(KRS)
lka I (ka)Ky(kR,) — Ki(ka)l;(kRy) ’
(96)

The value of ¢, is calculated by setting =R, in Eq. (96),
with k(¢,) given by Eq. (95), and solving the resulting
transcendental equation. Having calculated ¢, one ob-
tains the effective screening length. In the end, the elec-
trostatic energy is determined as a function of R and 6
from Egs. (91)—(93).

The benefit of this model as compared to the nonlin-
ear PB description is in its flexibility in handling the
degree of counterion condensation. The value of # can
be calculated, e.g., from the nonlinear PB as well as
other theories that are more appropriate when =1
where the PB theory is expected to fail (divalent coun-
terions already lead to E =24 for DNA; Sec. IV.B). This
model can also be combined with theoretical or empiri-
cal adsorption isotherms to calculate 6 self-consistently
in cases of significant counterion chemisorption (Cher-
stvy et al., 2002). This is particularly important for DNA
since evidence of site-specific chemisorption was found
for virtually all biologically important DNA counterions
(Sec. IV.C). In some cases purely empirical models for 8
might be also productive, as well as fitting 6 to experi-
mental data.

The main limitation is that this model requires the
thickness of the layer of condensed and adsorbed coun-
terions to be small compared to the rod radius. While
there might be exceptions, such an approximation is
quite reasonable for DNA at physiological or higher salt
concentrations (Sec. IV.B).

Flexible rods. Once the electrostatic energy per bend-
ing persistence length (\,) becomes smaller than kT at
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large R, it becomes important to account for bending
and thermal undulations of the rods (Podgornik and Par-
segian, 1990; Selinger and Bruinsma, 1991; Odijk, 1993;
Strey et al., 1997, 1999). It was demonstrated, for ex-
ample, that undulations significantly extend the range of
electrostatic interactions by allowing molecules to ap-
proach each other much more closely than the average
R (Podgornik and Parsegian, 1990; Selinger and Bruin-
sma, 1991; Strey et al., 1997, 1999). Additional correc-
tions, for example, for bending of molecules trapped in
randomly folded rather than straight conformations
have also been discussed (Odijk, 1993).

C. Helices: Azimuthally dependent interactions and
correlations

The PB theory corrected for undulations as well as
fluctuations has proven to be quite successful in describ-
ing the measured osmotic pressure of DNA aggregates
at large distances (Podgornik et al., 1994; Strey et al.,
1997, 1999). But measurements in the last 2 nm of sur-
face separation revealed significant deviations from the
PB theory which could not be explained by simple cor-
rections (Rau et al., 1984; Rau and Parsegian, 1992a,
1992b). Similar behavior was also observed in columnar
assemblies of charged helical polysaccharides (Rau and
Parsegian, 1990). These deviations were attributed to hy-
dration forces (Rau et al., 1984; Rau and Parsegian,
1992a, 1992b; Leikin et al., 1993). However, later calcu-
lations of pair interaction potentials in models with in-
homogeneous surface charge indicated that the ob-
served deviations are at least partially related to the
helical symmetry of DNA surface charge patterns
(Kornyshev and Leikin, 1997, 1998a).

Interaction energy. A generalization of the linearized
PB model that accounts for helical charge patterns was
suggested by Cherstvy et al. (2002). Within this approach
the electrostatic interaction energy in an aggregate of N
parallel helices is calculated as

N

1
Eq=ES'(0,R) + 5 > EX(k.RD,-D,). (97)

wmov=1

Here ES'(6,R) is the energy due to the net charge
e(1-6)L/1, of the molecules, which is calculated within
the cylindrical-cell model as described in Sec. VI.B. The
second term is associated with helical harmonics of the
charge density on each helix, @, is the azimuthal phase
of the helix u. The latter contributions are pairwise ad-
ditive, and only interactions between nearest neighbors
need to be included into the sum since the helical har-
monics of the pair potential decay quickly with R due to
the screening by the electrolyte.
Each pair interaction energy (Sec. V.E)

hel
E™L

2
koT = uimage(K’R) - ul(K,R)eiAqb COS((I)/,L - q)l/)
B

+ uy(k, R)e o cos[2(D, — d,)], (98)

is a sum of the helical harmonics of image (#img) and
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direct (1, and u,) forces [Egs. (58) and (59)], in which the
effective « from Eq. (95) should be used instead of «p.
Finally,

A%lﬁ = )\h/4)\eff (99)

is the mean square “nonideality” of each helix associ-
ated with sequence-related torsional deformations and
torsional fluctuations (described by the effective helical
persistence length \.) discussed in Sec. V.E. Similar to
pair interactions, the torsional adaptation length A\, char-
acterizes the effect of intermolecular forces on helix
nonideality. But the value of \, is different since each
molecule interacts with six rather than one nearest
neighbor. The value of \;, at each R can be calculated in
the mean-field approximation (Cherstvy et al., 2004; see
also EPAPS Document). Here we focus on the most im-
portant predictions of this model.

Azimuthal correlations. Equations (97) and (98) de-
scribe the energy, which is dependent on azimuthal ori-
entations of the molecules. The azimuthal dependence
qualitatively distinguishes helices from homogeneously
charged rods. Simple estimates show that the resulting
azimuthal correlations could be quite strong (see the
electrostatic zipper in Fig. 7 in Sec. V). One may define
the degree of fluctuations in the azimuthal orientation of
a molecule, averaged along its length, as A%I,:(&I)i),
where 60, is a fluctuation in the azimuthal orientation
of a helix u with respect to its nearest neighbors.
Ground-state (Kornyshev, Leikin et al., 2002) and statis-
tical (Sec. VLI) calculations suggest, for example, that in
columnar and even more hydrated cholesteric aggre-
gates of 150 bp DNA fragments Ay~ 0.1-0.5 rad.

The value of A} is expected to decrease with increas-
ing length of the helix, but only up to a certain point.
For the case of very long DNA molecules, it is important
to take into account that azimuthal rotations of the
double helix are likely to be decoupled on two sides of
various defects, e.g., (i) open and unstacked base pairs
due to thermal fluctuations, (ii) nonlinear, solitonlike
torsional deformations described by Eq. (69), (iii) kinks,
(iv) cuts in the sugar-phosphate backbone, etc. As a re-
sult, a very long DNA molecule behaves roughly as if it
were a collection of separate helical fragments. Al-
though the average length L of such fragments is diffi-
cult to predict accurately, estimates based on the known
probability of base-pair opening (Saenger, 1984) and cal-
culated energy of torsional solitons (Kornyshev and
Wynveen, 2004) suggest L ~200-500 base pairs.

D. A new look at old pictures: X-ray evidence of strong
azimuthal correlations

The prediction of strong azimuthal correlations
(Kornyshev and Leikin, 1997; Kornyshev, Leikin et al.,
2002) prompted the reevaluation of classical fiber x-ray-
diffraction patterns in the search of corresponding ex-
perimental evidence (Kornyshev et al, 2005). As dis-
cussed in Sec. II, x-ray-diffraction peaks from a highly
ordered DNA fiber lie at layer lines with k,
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=-n(2w/H)+j(2m/h). The scattering intensity at a layer
line n (j=0) given by Eq. (1) can be rewritten as

L,o(K) = NLI(K) + LK) 2 (e e KRR,

MFV

(100)

where ¢, =¢,(z) is the azimuthal orientation of each he-
lix at the axial position z, R,=R(z) is the lateral coor-
dinate of the helix centerline, and

IM(K) o< cos?(ny)J*(Ka) (101)

is the scattering intensity from a single molecule. The
first term on the right-hand side of Eq. (100) describes
the contribution of intramolecular scattering from N he-
lices. The second term describes the contribution of in-
termolecular scattering. It is dependent on the azimuthal
orientations and therefore it should be sensitive to azi-
muthal correlations.

In the simplest case of Gaussian fluctuations in ¢,,,

(e B9y = e BGHAG) pin(®, ). (102)
where d_Dﬂ is the average azimuthal orientation of each
helix, and exp[—nz(Aiﬁ A%)] is a Debye-Waller-like fac-
tor due to torsional disorder and fluctuations [Aé, Eq.
(99)] and azimuthal fluctuations (A(Zp) of the entire mol-
ecule. For uncorrelated molecules, exp[—nQ(A%ﬁ A(ZI,)]
=0, and intermolecular scattering should be observed
only at n=0. This simplifying assumption, formulated by
Franklin and Gosling (1953), became the dogma of
DNA fiber x-ray diffraction. According to it, all non-
equatorial diffraction spots in hydrated, noncrystalline
DNA fibers originate from intramolecular scattering
(Vainshtein, 1966). So strong was the power of the
dogma that experimental indications of intermolecular
scattering off the equator were overlooked until re-
cently. But the evidence was, in fact, there for many
years.

Indeed, at strong azimuthal correlations [(AfﬁAé)
=<1], intermolecular scattering should contribute to the
diffraction spots at n#0 as well. As a result, the posi-
tions of nonequatorial diffraction spots at layer lines
with small |n| should become dependent on the aggre-
gate density (since the intermolecular scattering is deter-
mined by the distance between molecules). This depen-
dence should disappear on layer lines with larger |n| due
to the rapidly decreasing exp[—nz(Affﬁ A(zp)] factor.

This is exactly what was found upon reevaluation
(Kornyshev et al., 2005) of the x-ray data published by
Zimmerman and Pheiffer (1979) almost 30 years ago
[Fig. 14(a)]. Upon variation in fiber density, the positions
of the diffraction spots at |n|=1 and even at |n|=2 tend
to track with the reciprocal spacings between molecules
rather than remain constant as predicted for uncorre-
lated molecules [Fig. 14(b)]. Only at |n|=3 do the posi-
tions of the maxima become independent of the aggre-
gate density. If the dependence of the signal on the
aggregate density had been caused by change in the
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FIG. 14. X-ray studies of columnar DNA assemblies at different densities. (a) Diffraction patterns of hydrated DNA fibers (cf. Fig.
2) at three different interaxial spacings d;, between adjacent double helices. The interaxial spacings are calculated from the
positions of the Bragg peaks (the two dark spots on the equator), K=kpag,. The locations of the diffraction maxima on the first
layer line are marked by white arrows, highlighting their change with d;,,. These maxima follow the Bragg peaks, suggesting a large
intermolecular contribution to the scattering. (b) Variation in the locations K,, of the diffraction maxima on the first (n=1), second
(n=2), and third (n=3) layer lines with separation (d;,) between DNA. The bold lines show expected locations of the intramo-
lecular maxima [Eq. (101)]. Thin solid lines show the locations of the diffraction peaks in hexagonal crystals with the same
azimuthal orientation of all molecules; dashed lines, in crystals with alternating orientations of molecules in consecutive rows;
dotted lines, in crystals with different azimuthal orientations of all three molecules in the unit cell (see Fig. 20). The corresponding
Miller indices are shown near each line. Intermolecular scattering appears to determine K; at all separations. K, are dominated by
intramolecular scattering at d;,>35 A resulting in flattening of the observed dependence. Kj are consistent with intramolecular

scattering at all d;,;. Reproduced from Kornyshev et al., 2005.

structure of each individual molecule in the assembly,
then one would expect the same effect for all layer lines,
but this is not what was observed.

E. Cholesteric aggregates

One of the most interesting, common and biologically
important examples of chiral assemblies is the choles-
teric phase. Cholesteric phases of a-helices (Robinson,
1961; Dupre and Duke, 1975), collagen (Giraud-Guille,
1996), DNA (Evdokimov et al., 1988; Strzelecka et al.,
1988; Van Winkle et al., 1990; Livolant, 1991; Leforestier
and Livolant, 1993), viral particles (Dogic and Fraden,
2006 and references therein), and other biological heli-
ces have been described. Cholesteric assemblies of DNA
have been observed in vivo (Livolant, 1984 and refer-
ences therein). Cholestericlike packing of collagen and
a-chitin has been suggested to play an important role in
formation of bone in vertebrates (Giraud-Guille et al.,
2003) and exoskeletons in arthropods (e.g., crabs) (Be-
lamie et al., 2004). It is, of course, the chiral nature of
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these molecules that is responsible for the existence of
these phases.

Forces arising from the direct electrostatic interaction
between helical distributions of charges (or hydration-
force equivalents) can be chiral only in the presence of
azimuthal correlations (Harris et al., 1997) (Sec. V).
Thus, to understand the physics of cholesteric phases, it
is particularly important to establish a relationship be-
tween the azimuthal interactions or correlations and the
structural parameters of the phase, e.g., the cholesteric
pitch (Ferrarini et al., 1995, 1996a, 1996b; Harris et al.,
1999).

The traditional approximation of weak azimuthal or-
der (Straley, 1976) may not always work. At least in
DNA assemblies, the azimuthal correlations might be
strong in the whole range of interaxial distances where
the cholesteric phase is observed (Kornyshev et al.,
2005). The data used to arrive at this conclusion were
obtained for very long, stretched DNA in fibers rather
than 150 bp DNA fragments typically used in the studies
of the cholesteric phase (Livolant, 1991). But long DNA
fibers form the cholesteric phase at about the same hy-
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"unit cell” triad

FIG. 15. Simplified side view of an elementary building block
(unit cell) that has the characteristic symmetry of a cholesteric
liquid crystal. The cholesteric liquid crystal can be viewed as a
stack of molecular layers where local packing of molecules is
hexagonal and the molecules in each layer are twisted by an
angle ¥ with respect to another layer. The unit cell consists of
a molecular triad with two parallel molecules (labeled 2 and 3)
and a third molecule (labeled 1) twisted in the direction paral-
lel to the plane formed by the first two molecules. The liquid
crystal is an assembly of such triads where molecules may have
random shifts (not shown) along their axes.

dration (Podgornik et al., 1996; Strey et al., 2000). Fur-
thermore, the extent of azimuthal correlations between
150 bp fragments is not expected to be dramatically dif-
ferent from that in long DNA (Sec. VI.C).

A formalism that allows one to calculate the param-
eters of a chiral phase from the pair potential between
molecules without assuming weak azimuthal correlation
has been developed (Emelyanenko et al., 2000; Emely-
anenko, 2003). Based on a mean-field theory, this in-
volved formalism operates with two order parameters:
one for the nematic orientation, the other one describing
the biaxial order. The capabilities of this formalism have
been demonstrated for a model of steric interactions
combined with van der Waals interactions, but its valid-
ity criteria were not defined, and it was not tested on
electrostatic interactions of chiral charge distributions.

Some insight into nontrivial and potentially important
physics stemming from strong azimuthal dependence of
electrostatic interactions between nearest-neighbor mol-
ecules can be gained from ground-state estimates for the
simplest unit cell (Fig. 15), which has the characteristic
symmetry of a cholesteric liquid crystal (Kornyshev,
Leiken et al., 2002). This unit-cell triad is composed of
two parallel molecules and a third molecule whose long
axis is twisted by a small angle V¥ in the parallel plane.
The dependence of the ground-state energy of such triad
on ¥ at W<\p/L is similar to Egs. (77)—(80), but the
dependence of the corresponding chiral torque and the
second moment on the interaxial distances and relative
azimuthal orientations of the molecules in the triad is
qualitatively different. The interaction energy of the

triad is E=Uy+ U, ¥+ (1/2)U,¥2, for small ¥. The ex-
pressions for the U, coefficients may be found in Korny-
shev, Leikin, et al. (2002) or the EPAPS Document in the

Reference section. In the triad, a nearly parallel configu-
ration is more stable for a net repulsive interaction be-
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FIG. 16. Cholesteric pitch shown as a function of the interaxial
distance between 146 base-pair DNA molecules with radii a
=9 A, as found from Eq. (103) at 6=0.7. The different curves
were calculated at ¢, corresponding to different distributions
of condensed counterions [Eq. (40)]: (1) f;=0.3, f,=0.6, f3=0;
(2) f1=0.35, /,=0.6, f3=0; (3) f1=0.35, £,=0.55, f3=0; 4) f
=04, £,=0.55, ;=0 (Kornyshev, Leikin, et al., 2002). Inset: The
pitch measured experimentally for DNA molecules of the
same size in solutions with different salt concentrations (repro-
duced from Stanley er al., 2005). The estimated and measured
pitch vs distance curves share the same qualitative behavior,
i.e., a minimum at intermediate separations, a sharp rise at
shorter separations (higher densities), and a gradual rise at
larger separations (lower densities).

tween molecules, i.e., 02>0. It is also essential to ac-
count for the contributions from both the first and

second helical harmonics in U;, which have opposite
signs and result in nontrivial effects.

Minimization of the triad energy with respect to ¥
gives the cholesteric pitch as

P=—-\3aRU,/U,. (103)

This expression predicts a nonmonotonic dependence
on the interaxial distance R between molecules in the
triad (Fig. 16), which was observed in certain experi-
ments (Leonard et al., 2001; Stanley et al., 2005). Such
dependence is caused by the azimuthal frustration in the
pair interaction potential, Egs. (57)-(60) (see also Sec.
VLI). Competing first and second helical harmonics fa-
vor different azimuthal orientations and, as a result, dif-
ferent directions of the cholesteric twist. At large R, the
contribution from the first helical harmonic dominates.
The expected pitch decreases with decreasing R simply
because of the strengthening chiral interaction (an in-

crease in the ratio of 171 to 02). At smaller R, the second
helical harmonic becomes more important. It produces a
chiral torque of opposite handedness (Kornyshev and

Leikin, 2000), which reduces U] and causes a minimum
followed by an increase in P upon further decrease in R
(Kornyshev, Leikin, et al., 2002).

Both the value of P (~0.5-30 um) and its nonmono-
tonic dependence on R predicted by ground-state esti-
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mates are in good agreement with experiments (Van
Winkle et al., 1990; Livolant, 1991; Livolant and Lefor-
estier, 1996; Pelta, Durand et al, 1996; Stanley et al.,
2005); cf. Fig. 16. Furthermore, the puzzling transition
from the cholesteric to hexagonal, columnar (Durand et
al., 1992), or line-hexatic (Strey et al, 2000) phase of
DNA observed at R<32-35 A might also be related to
the azimuthal frustration in the interaction potential. It
has been proposed that azimuthal disorder caused by
the frustration (cf. Sec. VI.I) might effectively destroy
the cholesteric phase (Kornyshev and Leikin, 2000; Strey
et al., 2000; Kornyshev, Leiken et al., 2002). Provided
that the agreement with the experiments is not a coinci-
dence, the short-range azimuthal interactions and/or cot-
relations are closer to the low-temperature (ground-
state) limit than the high-temperature approximations
usually employed in molecular models. But a statistical
theory that would properly account for such strong azi-
muthal order has not yet been developed.

F. Predicted and measured forces: DNA, guanosine, and
collagen

Osmotic stress force measurements. A large body of
data on interactions between helices in columnar aggre-
gates at the last few nanometers of separation was col-
lected over the past 30 years (Rau et al., 1984; Parsegian
et al., 1986, 1987; Podgornik et al., 1989, 1994; Rau and
Parsegian, 1992a, 1992b; Leikin et al., 1994, 1995; Mari-
ani and Saturni, 1996; Strey et al., 1997, 1999). In most
cases, the osmotic pressure of an aggregate is deter-
mined by equilibration in a solution of a polymer which
cannot penetrate inside the aggregate (Rau and Parse-
gian, 1992a). In a hexagonal aggregate, the osmotic pres-
sure is related to the interaction energy as

S 22 S W . v
v, NL\3R\ 4R /|’

where V, is the volume of water in the aggregate. The
interaxial distance between molecules R is measured by
x-ray diffraction. The results are often interpreted in
terms of an effective pair interaction force fp,; between
the molecules (per unit length),

(104)

Joaic 1 [ OEqger :E, (105)
L 3NL\ 4R 5

where the factor of 1/3 takes into account that there are
three (6/2) pair interactions per molecule in a hexagonal
aggregate. This interpretation facilitates the intuitive
perception of the results, but it is important to keep in
mind that it yields a true pair interaction force only
when such forces are pairwise additive.

DNA. Interactions between DNA molecules have
been studied at different ionic strength, composition of
bulk electrolyte, temperature, and so on (Rau et al,
1984; Parsegian et al., 1986; Podgornik et al., 1989, 1994;
Rau and Parsegian, 1992a, 1992b; Strey et al., 1997,
1999). In many cases DNA forms cholesteric and line-
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hexatic rather than columnar assemblies (Sec. VLE).
However, for our present discussion, only the local (sev-
eral nearest neighbors), approximately columnar struc-
ture is important and we can temporarily ignore the dif-
ference.

Several examples of measured force curves, illustrat-
ing commonly observed features, are shown in Fig.
17(a).

(i) At large distances (R=35-40 A) the forces decay
with the characteristic length determined by salt concen-
tration (Podgornik et al., 1989, 1994; Strey et al., 1997,
1999). The forces measured in NaCl are in good agree-
ment with the predictions of the PB theory (Odijk, 1993;
Podgornik et al., 1994; Strey et al., 1999), but the force
amplitude strongly depends on (even monovalent) cat-
ions (Podgornik et al., 1994). The agreement with theory
can still be achieved if one accounts for cation adsorp-
tion (including chemisorption) by renormalizing the sur-
face charge within either the nonlinear or linearized PB
model (Podgornik et al., 1994).

(i) At 27-30<R<35-40 A (depending on counteri-
ons), a strong attractive component of the force can be
detected in the presence of some counterions. In 50 mM
MnCl,, this attraction causes the jumps (dashed lines) at
5 and 35 °C [Fig. 17(a)] (Rau and Parsegian, 1992b). At
50 °C, the force becomes purely attractive in this dis-
tance range. Similar behavior was observed with other
counterions as well (Rau and Parsegian, 1992b). This
midrange attraction appears to be in good qualitative
and quantitative agreement with forces predicted by
Egs. (97)-(99) and (104), Fig. 17(b). Within such an inter-
pretation, the electrostatic zipper attraction (Sec. V.D,
Fig. 7) is determined by the balance between the helical
components u;(x,R) and u,(x,R) of the interaction. Its
counterion specificity is reasonably well explained by the
preferences of different counterions to bind at different
locations (considered in Sec. VII). Its strengthening with
temperature might be caused by increased torsional ad-
aptation (smaller \;, Sec. V.E), repartitioning of bound
Mn?* with temperature (Cherstvy et al., 2002), or both.
The specificity of the nature of counterion absorption
(not just its valence) and temperature-induced strength-
ening of attraction do not appear to be consistent with
the theories of counterion-correlation forces proposed
to date (Sec. V.C). Within the idea of attractive hydra-
tion forces, these properties can be explained by pos-
sible effects of bound counterions on the structure of
surface water (Rau and Parsegian, 1992a) and by the
entropically favorable release of such structured water,
respectively (Rau and Parsegian, 1992b).

(iii) At smaller separations (R<27-30 A) the force
curves, measured at different temperatures and Mn?*
concentrations (Rau and Parsegian, 1992a, 1992b), seem
to follow a common short-range repulsion. Within the
PB theory, the independence of salt concentration would
not be surprising because the concentration of the mo-
bile ions inside the aggregate at such separations is also
expected to become almost salt independent. More sur-
prising is that the repulsion remains strong when the
charge of DNA is almost completely neutralized by
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FIG. 17. Experimental and theoretical plots of osmotic stress in columnar DNA assemblies. (a) Measured osmotic stress vs
interaxial separation in DNA solutions with different salts at different concentrations and temperatures (Rau and Parsegian,
1992b, data kindly provided by D. Rau). For monovalent NaCl, repulsion is always seen and can be fitted by the PB theory.
However, for MnCl,, at intermediate separations the system is metastable or unstable (collapses) at constant pressure (dotted
lines). At higher temperatures, the range of the attraction increases, which may occur due to redistribution of Mn?* between
binding sites in minor and major grooves (Cherstvy et al., 2002). (b) Calculated osmotic pressure vs separation in aggregates of
torsionally flexible, nonideal DNA (Sec. V.D, V.E, VL.B, and VI.C). The top curve (thick solid line) shows the pressure calculated
at 0.15M monovalent salt concentration assuming 6=0.1. The lower plots show the pressure at 50 mM concentration of 2:1
electrolyte, 6=0.8, A\.=300 A, and different torsional rigidities C, and partitioning of condensed counterions between minor and
major grooves [Eq. (40)]: C,=3x107" ergcm and 40%:60% minor:major groove distribution (thin solid curve); C,=0.5
% 107!? erg cm and the same counterion distribution (dashed curve); and C,=0.5x 10"'? erg cm and 20%:80% minor:major groove
distribution (dash-dotted curve). The dotted tie lines represent first-order transitions, resulting in part from the azimuthal frustra-

tion of the pair interaction potential (Secs. V.D and VLI).

strongly bound multivalent or polycounterions (Rau and
Parsegian, 1992a, 1992b). The exponential dependence
of this force on R with a very short decay length \
~2 A is not expected from the PB theory for homoge-
neously charged cylinders. However, this force appears
to be in good agreement with the helical harmonics of
image repulsion [Ujpec(k,R)] predicted by Egs.
(97)-(99) and (104), as illustrated in Fig. 17(b) (Korny-
shev and Leikin, 1997).

Recently short-range repulsive and midrange attrac-
tive forces between DNA in the presence of several
polyamines and cobalt hexaamine have been carefully
mapped by combination of osmotic stress and magnetic
tweezer measurements (Todd et al., 2007). An exponen-
tial repulsion with ~2.4 A decay length has been ob-
served in the presence of putrescine. In addition to the
same repulsion, a roughly exponential attractive contri-
bution with ~4.8 A decay length and smaller preexpo-
nential factor has been observed with spermine, spermi-
dine, and cobalt hexaamine. The amplitude of the
attraction was dependent on the counterion. The au-
thors interpreted the attraction and the short-range re-
pulsion as hydration forces. Alternatively, these forces
can be interpreted as a sum of electrostatic zipper attrac-
tion and image repulsion (the net charge of DNA under
conditions of these experiments was small, §=0.9-1, as
indicated by the absence of longer-range electrostatic re-
pulsion). For polyamines and cobalt hexaamine, which
exhibit a preference for binding in the major groove of
B-DNA (Sec. IV.C), the attraction is mostly determined
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by ul(K’R) o KO(R/)\attr) o exp(_Rn\attr)9 where

H2w

_— 106
V1 + (kH/27)? (106)

attr =

(Kornyshev and Leikin, 1999). At " '=10 A (as was the
case in the experiments of Todd et al., 2007), Eq. (106)
predicts Ny ,=~H/2m=5 A, independent of the ionic
strength, exactly as observed. The expected decay length
of the first helical harmonic of the image repulsion is
Nrep=Nar/2=2.5 A, also as observed. The factor of 1/2
is due to the interaction of each charge with its image,
which effectively doubles the distance (Landau and Lif-
shitz, 1982) or halves the decay length (Kornyshev and
Leikin, 1997). Full fitting of the osmotic pressures mea-
sured by Todd et al. (2007) yields good quantitative
agreement with Eq. (98) (to be reported elsewhere),
clearly indicating the important contribution of electro-
static interactions (although a contribution from hydra-
tion forces cannot be excluded either).

Guanosine. Another interesting and instructive ex-
ample is the interaction between four-stranded gua-
nosine helices. These helices self-assemble from deox-
yguanosine monophosphates. The monomers associate
into tetramers that stack on top of each other, forming
helices with four equally spaced strands. Such molecules
present a special case of helical symmetry in which the
only nonzero harmonics of the charge pattern are n
=jN,, where N, is the number of strands and j
=+1,+2... (Kornyshev and Leikin, 1997). The corre-
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sponding interaction energy is determined by the lowest
harmonic with n=+N,,

Ehel L
_jil)/_ = uimage(K,R)
kgT
+ uNS(K,R)e*NEA?ﬁ coS[Ny(®, - P, + )],
(107)
where
(R) 4lg 2 Oy n (ky R,y a)
Uimage\ K, =5 f
: " ey a) Ky (ky @)
o exp(— ZKNSR), (108)
Alg , Ky(ky R)
uy (k,R) =~ —¢ -
N 2 "N (ke @)K}y (ky @)
o exp(— KNSR), (109)
and
e —
Ky, = VK + N4/ H. (110)

The first contribution to this energy originates from
image repulsion. For N;=4 it should decay exponentially
with a very short characteristic length, H/167=0.7 A
(H~40.8 A) (Mariani and Saturni, 1996; Kornyshev and
Leikin, 1997, 1998a). The attraction, given by the second
term in Eq. (107), is likely to be weak due to its strong
dependence on torsional fluctuations [fxexp(—16A%b)] and
inherent torsional flexibility of the unlinked stacks of
deoxyguanosine tetramers, which is actually poorly
known.

In other words, no helix-specific interactions are ex-
pected beyond 5-10 A surface separation, and none are
observed (Mariani and Saturni, 1996). In contrast to the
case of DNA, the forces measured in this distance range
agree with the PB theory for homogeneously charged
cylinders. Only in the last few angstroms do the forces at
different salt concentrations appear to merge into a
common exponential repulsion with the decay length
~0.7 A (Fig. 18). While a macroscopic dielectric re-
sponse is unlikely to be a good approximation when the
surfaces are separated by one to two monolayers of wa-
ter, the coincidence of the decay lengths might not be
accidental. The predicted decay length of the image re-
pulsion is determined entirely by the pitch of the helix
(H/16m). It relies and depends only on the symmetry of
the helix and not on details of the dielectric response of
water. But, more than that, a macroscopic electrostatic
calculation (Rudd et al, 2006) reproduces fairly well
even the absolute values of the measured forces (Mari-
ani et al., 1998). However, the observed short-range re-
pulsion could also be caused, for example, by hard-core
collisions of guanosine monomers protruding from the
helix due to thermal motions or by hard-core interac-
tions involving one monolayer of water adsorbed on
each surface.
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FIG. 18. Mean repulsive force per unit length between gua-
nosine molecules from experiment (symbols) (Mariani and Sat-
urni, 1996, data kindly provided by P. Mariani) and from the-
oretical fits (lines) using ground-state calculations, Egs.
(107)—(110) (Rudd et al., 2006). Data are shown for solutions
with 0.1 (open circles, dashed lines) and 0.5M (open triangles,
solid lines) NaCl salt concentrations. Theoretical fits were
made assuming an effective radius of each guanosine stack of
132 A where ~84% of the guanosine charge was compen-
sated by condensed counterions.

Interestingly, the apparent decay length of an attrac-
tion measured between guanosine helices at very high
concentrations of buffer electrolyte, 3—4M KCI, also co-
incides with the one predicted by the second term in Eq.
(107) (Mariani et al., 1998). But interpretation of a force
at such high salt concentrations as the electrostatic zip-
per attraction would be even more speculative.

Collagen. An exponential repulsion with ~0.7 A de-
cay length was measured from ~1 to ~8 A surface
separation between collagen triple helices (Fig. 19)
(Leikin et al., 1994, 1995). The balance of this repulsion
with a longer-range attractive force is responsible for
keeping collagen fibers in tendons and ligaments prop-
erly hydrated and flexible. As for guanosine helices, one
cannot expect electrostatic calculations with the macro-
scopic water dielectric constant to be quantitatively ac-
curate here, but qualitative analysis of collagen electro-
statics is also very instructive.

Approximately ~15% of collagen amino acids have
charged side chains; about half of them are negative and
the other half positive. These charges do not follow the
helical symmetry of the molecule. The positive and
negative charges are clustered together along the helix,
many forming “salt bridges” with each other. It has been
suggested that interactions between charged amino acids
are important for proper staggered alignment of triple
helices in fibers (Hulmes et al., 1973), but it was also
argued that they do not contribute significantly to the
net measured force (Leikin et al., 1995). For instance,
forces measured between collagenlike triple helical pep-
tides without charged side chains were the same as be-
tween full-length collagen fibers (Leikin, 1999).

In contrast, a pair of one positive and one negative
partial (~0.5¢) charges is present on the backbone of
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FIG. 19. Measured (open circles) and predicted (thin solid
line) repulsive forces between collagen triple helices at pH 6.0
and low ionic strength (reproduced from Kornyshev and
Leikin, 1997). The prediction was based on the mean-field
theory of hydration forces (Kornyshev and Leikin, 1997). The
corresponding expression for the repulsive hydration force can
be obtained from Egs. (105), (108), and (110) using the corre-
lation length in water (=4 A) instead of k! and replacing the
factor 4/ B{f\,‘/ IZ with a phenomenological constant (determined
by fitting the data). However, electrostatic image repulsion of
partial charges on the collagen backbone from dielectric cores
of surrounding collagen molecules fits the data as well (assum-
ing k=0 and 5<&<80 so that 7<I5<100 A).

every amino acid regardless of its side chain (similar to
a-helices, Sec. IV.A). These charges do follow the helical
symmetry of the molecule and, because of their large
number, can produce a significant, although rapidly de-
caying, electric field. Their contribution to the interac-
tion energy can be estimated from Egs. (107)—(110) with
N,;=1 (while collagen is a triple helix, its three strands
are essentially fused into one; Fraser et al., 1979, 1983),
H=9.6 A, k=0, I.~3 A, and ¢;~1. As in the case of
guanosine helices, the measured decay length closely
matches the prediction H/47=~0.75 A for the image re-
pulsion. The observed amplitude also lies within the pos-
sible range of the predictions (defined by the uncertainty
in the effective value of the dielectric constant, 5<e
<80). Thus the measured force could be the image re-
pulsion. However, it could also originate from the ener-
getic cost of deforming the hydrogen bond network in
water (hydration forces), as suggested by measurements
in polar, nonaqueous solvents (Kuznetsova et al., 1997)
and by Raman spectroscopy (Leikin et al., 1997). The
mean-field model for hydration forces (Marcelja and
Radic, 1976) is closely related to the formalism of the
DH theory (Kornyshev and Leikin, 1989). It yields equa-
tions similar to Egs. (107)~(110) with 4/ /17 and « re-
placed by phenomenological constants (Kf)rnyshev and
Leikin, 1997), and it gives essentially the same predic-
tion =H/4 for the decay length of the repulsion (Fig.
19). Regardless, it appears that the interaction between
collagen molecules is also intimately related to the struc-
ture of their helices.
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G. Integral screw puzzle

Since intermolecular interactions appear to be signifi-
cantly affected by the structure of the helix, the struc-
ture must be affected by interactions as well. Several
examples of such effects in DNA aggregates have been
known experimentally for 25-50 years, but this had not
been addressed theoretically because the DNA structure
was simply not accounted for in the theory of intermo-
lecular interactions. In particular, since the early crystal-
lographic studies, B-DNA was known to have an ap-
proximately ideal helical structure with ten base pairs
per turn in fibers (Saenger, 1984) (Secs. IL.D-ILF). A
crystallographic model attempted to explain this in
terms of repeated hard-core interactions, in a densely
packed nonhexagonal lattice of the molecules (Dover,
1977). However, hydrated DNA in a columnar, hexago-
nal lattice was found to retain the ideal helix structure
with 10 bp/turn with up to at least 10-15 A surface
separation (Zimmerman and Pheiffer, 1979; Rhodes and
Klug, 1980). At the same time the structure of DNA in
solution was found to be nonideal with an average of
~10.5 bp/turn (Griffith, 1978; Levitt, 1978; Wang, 1979).
It was therefore concluded by Rhodes and Klug (1980)
that “in ...fibres of DNA, the molecules still interact,
however weakly, through several layers of water and in-
fluence each other to produce an integral screw.” This
appeared to be the property only of fibers from long,
natural DNA. The structure of synthetic DNA oligo-
mers in crystals was determined to be closer to the non-
ideal helical structure in solution than to the ideal struc-
ture in fibers (Dickerson, 1983).

The first theoretical attempts to address this long-
standing puzzle were made by Kornyshev and Leikin
(1998a, 2001). It was pointed out that sequence-
dependent variations in the twist angles between adja-
cent base pairs would prevent proper azimuthal align-
ment in juxtaposition of long molecules with
uncorrelated sequences. Without torsional adaptation,
the misalignment would accumulate with the juxtaposi-
tion length L as ZAQ,:L/Z)\C [Sec. VE, Eq. (62)], where
Aé:(((bv—Zﬂ-z/ (H))*) is the mean-square nonideality of
each helix. This would completely disrupt the energeti-
cally favorable contribution from helical harmonics of
charge-charge interactions [second and third terms in
Eq. (98)]. The gain in the electrostatic interaction energy
from reestablishing the alignment is higher than the en-
ergetic cost of the corresponding torsional deformation
resulting in torsional adaptation of molecules to each
other (Sec. V.E).

In pairs, only relative alignment of molecules is impor-
tant and they can adapt to each other without becoming
ideal helices (Sec. V.E). In fibers, each molecule interacts
with six neighbors. This increases the energy gain and
enhances torsional adaptation. Furthermore, energeti-
cally favorable alignment between all neighbor pairs in a
columnar aggregate is possible only for molecules with
identical sequences (oligomers in crystals) or for ideal
helices with limited rather than accumulating Afﬁ. Based
on calculations of the corresponding energies, it was
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concluded that helical harmonics of electrostatic interac-
tions induce torsional deformation and idealize each he-
lix (Cherstvy et al., 2004).

While the origin of the ideal average helical confor-
mation of long, natural DNA in fibers now appears to be
reasonably clear, the physics of overwinding from
10.5 bp/turn in solution to 10 bp/turn in fibers is still a
mystery.

The following hypothesis has been suggested (Korny-
shev and Leikin, 1998a). The structure factors of an ideal
helix,

o0

Sppkzn,m) = 2 Ok, +gn-Gj) Omn+JGlg>
==

(111)

have additional maxima at integral G/g=H/h (e.g., at
k,=0, n=m=jGlg; k,=0, n=0, m=JG/g; k,=0, m=0,
n=-JG/g; at j#0 and J #0). These peaks in the struc-
ture factors result in corresponding contributions to the
intermolecular interactions. The corresponding interac-
tion modes disappear in helices with a nonintegral screw.
An estimate comparing the interaction energies at G/g
=H/h=10 and H/h=10.5, both in ideal helical confor-
mations, suggested that the energy gain upon establish-
ing the integral screw might be sufficient to induce the
overwinding (Kornyshev and Leikin, 1998a).

However, this was a ground-state estimate. It did not
take into account torsional and azimuthal fluctuations.
Consider, for example, integral screw interaction modes
with k,=0, n=0, m=+10 and k,=0, m=0, n=—=10. For
the tenth-order term [analogous to the lower orders of
Egs. (57), (59), and (98)], we find that their maximal con-
tribution to the pair interaction energy at the optimal
alignment of a given pair within the aggregate is

(SE(R)/L N %(1 — 6)[K10(KR) + Qo’lo(KR,Ka)]
kgT P (ka)*K (ka) K }y(ka)

2 2
g~ S0AG+AG)

(112)

The integral screw interactions depend on the tor-
sional (A%) and azimuthal (A%D) displacements as
exp[—50(A3+ A3)]. From the same x-ray data that estab-
lished the integral screw we know that the torsional and
azimuthal fluctuations (while small) are still sufficient to
suppress the intermolecular scattering at n=3 due to the
fluctuation factor of exp[—nz(Afﬁ Afb)] (Sec. VI.D). Thus
exp[—9(Ai+ A(zp)]< 1, consistent with theoretical esti-
mates (Lee and Wynveen, 2006). Because of their in-
credibly strong dependence on Afﬁ and A%, the integral
screw interaction modes considered above, which at first
glance explained the effect, should be completely
washed out by fluctuations. The same conclusion could
be made if the interactions arise from hydration, steric,
or any other forces. The idea of intermolecular interac-
tions being directly responsible for setting the integral
screw through the corresponding interaction modes sim-
ply does not work.

Presently, we are aware of only two possible explana-
tions of the integral screw. (i) It was suggested that the
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intrinsic pitch of the DNA double helix changes continu-
ously with the interaxial distance in columnar aggre-
gates, and therefore the apparent integral screw is not
an exact but rather an approximate value at typical ag-
gregate densities. However, this idea, proposed by Du-
rand et al. (1992), was based on rather low-quality x-ray
data, which required corrections for imperfect orienta-
tions of molecules. Therefore the separation depen-
dence of the pitch might be an artifact of the corrections.
Indeed, the integral screw of 10 bp/turn independent of
the aggregate density was based on much higher-quality
x-ray data, which did not require such corrections (Zim-
merman and Pheiffer, 1979; Rhodes and Klug, 1980). (ii)
Alternatively, 10 bp/turn could be an intrinsic property
of the ideal double helix, e.g., the average structure of
synthetic DNA with the ATATAT... sequence is an
ideal helix with 10 bp/turn, both in solution and in ag-
gregates (Saenger, 1984). The role of intermolecular in-
teractions might be in enforcing the ideal average struc-
ture of DNA with random base-pair sequences while the
overwinding from 10.5 to 10bp/turn might be an intrin-
sic property of such a structure (which is still not under-
stood). Regardless, the puzzle of the integral screw has
not yet been solved.

H. Electrostatics of the B-A transition in DNA

Other polymorphic transitions may also be attributed
to the helical interactions between molecules. One such
transition is that from the B to the A form of DNA
(Langridge et al., 1960; Ivanov et al., 1974; Ivanov and
Krylov, 1992), observed for a single DNA molecule in
mixed solvent solutions (Ivanov et al., 1974) and for
DNA aggregates upon removal of water (Langridge
et al., 1960). A number of studies of this transition for an
isolated DNA molecule in solution (see, e.g., Yang and
Pettit, 1995; Cheatham and Kollman, 1996; Jayaram
et al., 1998; Banavali and Roux, 2005; Elsawy et al., 2005;
and references therein) considered potential roles of hy-
dration and counterions. However, the role of intermo-
lecular interactions in this transition was not explored
until recently, despite clear experimental evidence of
their importance in aggregates (Lavalle et al., 1990; Rup-
precht et al., 1994).

The interaction-driven B to A transition occurs in
dense aggregates containing little water. Although hard-
core interactions between DNA might be very impor-
tant in such aggregates, electrostatics is also likely to
play a large role. To learn the qualitative physics of the
latter, the following model was proposed (Kornyshev
and Leikin, 1998b). To avoid limitations of the PB
theory and the poorly known dielectric response of wa-
ter at small distances, all ions and partial charges on
water molecules were treated explicitly, on the same
footing as DNA phosphates. The Coulombic Green’s
function (Sec. IV.A) with =2 of a sterically confined,
frozen, interstitial solution was used to describe interac-
tions between all these charges. In the first approxima-
tion, the osmotic pressure of trapped counterions in such
a dense aggregate is determined simply by their total
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TABLE I. Structural parameters of A and B forms of DNA.

Structure . . ~ .
type b (A) H (A) ¢, (rad) l. (A)
A 9 28.2 0.667 1.3
B 9 33.8 0.407 1.7

concentration. Therefore it does not contribute to the
transition energy at constant hydration. As above, the
energy associated with helical harmonics of the molecu-
lar charge pattern was calculated as a sum of all pair
interaction energies E,; between nearest-neighbor mol-
ecules. It was argued that at constant hydration the main
contribution into E,;, can be approximated by

E,/bp  8lz< .
_I;T ~ I—BE (=1 giKO(ngR)Ifl(nga)cos(ncS(ﬁ),
B ¢ n=1

(113)

where the dimensionless parameter £, [cf. Eqgs. (39) and
(40)] is determined by the patterns of fixed DNA
charges, counterions, and fractional water charges
(analogous to ¢, at larger distances, Secs. [IV.D and V.D),
g=2m/H is the intrinsic twist (reciprocal pitch) in each
helical form, and &¢ is the difference in the azimuthal
phases of molecules.

The difference of the interaction energies between
DNA of the B and A forms primarily results from their
distinct structural parameters (see Table I), with the
chief difference originating from the disparity in the azi-

muthal width ¢ of their minor grooves and in the
charge density (/). It has been suggested that some in-
sight into the electrostatics of the transition at constant
hydration can be gained even without detailed knowl-
edge of the pattern of counterion and water charges
(Kornyshev and Leikin, 1998b). For instance, one would
expect the main contribution into the electrostatics of
the transition to originate from phosphate-phosphate in-
teractions. Their contribution into the interaction energy
is given by Eq. (113) with Z2=cos?(¢,), yielding &
~0.23 for A-DNA and £Z=0.1 for B-DNA. Substitution
of these values into Eq. (113) revealed that the B to A
transition reduces the corresponding energy of pair in-
teractions between DNA by ~2kzT per base pair at an
interaxial separation of R=~23 A (Kornyshev and
Leikin, 1998b). The phosphate pattern of the A form,
more favorable for electrostatic interactions between
DNA molecules, outweighs the unfavorable increase in
their surface density. It is indeed more favorable for in-
teractions, as it allows for a stronger separation of posi-
tive and negative charge motifs within each molecule.
Moreover, at higher aggregate densities, the optimal
alignment of phosphates on the opposing molecules is
achieved at §¢p=0 in the A form and at 6¢#0 in the B
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form. As discussed in the next section, ¢=0 is the only
alignment that prevents the energetically unfavorable
azimuthal frustration on a densely packed lattice, result-
ing in an additional energetic advantage of the A form.
Note that the corresponding different alignment for the
two forms in natural DNA fibers was observed by x-ray
diffraction (Langridge et al., 1960; Dover, 1977).

A subsequent study explored additional electrostatic
contributions arising from the effects of different con-
densed counterion distributions and from many-body
correlations at 8¢p#0 (Rudd et al, 2007). Analysis of
various approximations with fixed fractions of counteri-
ons at different locations suggest that counterion ab-
sorption in grooves results in the increased importance
of intramolecular electrostatic interactions near the B to
A transition. However, for the weak localization ex-
pected for monovalent counterions, the electrostatics of
the transition appears to be driven by the phosphate-
phosphate interactions discussed above. A predominant
adsorption of counterions in the wider groove provides a
particularly strong intermolecular impetus towards the
B to A transition (Kornyshev and Leikin, 1998b).

I. XY models of mesomorphic transitions in DNA aggregates

Crystallographic studies of aggregates revealed not
only the cholesteric-hexagonal transition and DNA
polymorphism discussed above but also various meso-
morphic changes in the symmetry of lateral packing of
both B- and A-DNA (Langridge et al, 1960). While
quantitative modeling of such mesomorphic transitions
is hindered by the lack of exact knowledge of the full
interaction potentials at short distances, much can still
be learned from the general form of the dependence of
the interaction energy on azimuthal orientations of indi-
vidual molecules (Kornyshev and Leikin, 1997).

We start from the simplest case of ideal, rigid double
helices, where the energy of interaction between parallel
molecules of a columnar assembly can be written in a
form of a new kind of frustrated XY model. Both in
highly hydrated and in dense aggregates, the interaction
energy can be rewritten as [see Eq. (98)]

£

L
kBT = 52 {uO(R/J,,V) - uZ(R,u,V) - ul(RIU,,V)(SV : S,u,)
v,

+ 2u2(R#7,,)(s,,-sM)2}. (114)

Here the summation is performed only over nearest
neighbors, as the coupling constants exponentially de-
crease with the distance between sites (molecules). The
spins

s, = cos(P,/2)Xx + sin(P,/2)y (115)

represent azimuthal orientations ®,, of the double heli-
ces. The positive coefficients uy(R,,), u;(R,,), and
u(R, ,) are determined by the interaction potentials
[e.g., Eq. (539)]. Unlike Egs. (97) and (98), here the inter-
axial distance R, , between nearest-neighbor helices u
and v is not assumed to be the same throughout the
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FM

RHO
AFI AFP

FIG. 20. Different spin configurations and lattice types for co-
lumnar assemblies of DNA in the ground state (Harreis et al.,
2002). The FM (ferromagnetic) state corresponds to when the
spins (azimuthal orientations of the molecules) are all aligned.
The RHO AFI state corresponds to an antiferromagnetic,
rhombic lattice where spins on one sublattice have one value
and those on the other sublattice have another. The rhombic
packing of this lattice reduces less favorable interactions be-
tween like spins. The AFP is a hexagonal antiferromagnetic
Potts state that has three sublattices with different spin orien-
tations. In both the AFI and AFP lattices, the relative spin
angles tend to increase with increasing molecular density.

assembly. This generalized formulation allows one to de-
scribe lattice distortions as well as liquidlike phases and
it also provides useful analogies with magnetic systems
(Izyumov and Skryabin, 1988). The peculiar feature of
Eq. (114) is that the first ferromagnetic term tends to
align the spins parallel to each other while the second
term favors a perpendicular orientation, resulting in azi-
muthal frustration (Sec. V). This second term provides
for much of the interesting many-body physics of the
problem.

Ground state. The competition between these two
terms leads to ground states with different lattice sym-
metry and spin configurations (Fig. 20), depending on
distribution of counterions and density of the molecules
(Harreis et al, 2002, 2003). At low DNA density, the
ferromagnetic term dominates and a hexagonal, ferro-
magnetic phase with parallel spin is expected (Fig. 20,
FM). At higher density, azimuthal frustration leads to
hexagonal packing with three alternating spin orienta-
tions (Fig. 20, AFP), when the dominating contribution
into the energy comes from uy(R,,) and u,(R,,). A
rhombic lattice with two alternating spin orientations
forms when the contribution from the first and second
helical harmonics [u(R,,,) and u,(R,,,)] becomes more
important. Similar mesophases were also predicted using
a phenomenological Landau theory (Lorman et al.,
2001).

Statistical mechanics. Calculation of the partition func-
tion of spins on a 2D hexagonal lattice with the interac-
tion Hamiltonian given by Eq. (114) formally predicts
two additional mesophases where the spins are topologi-
cally disordered (Wynveen et al., 2005). One of these
phases is a Berezinskii-Kosterlitz-Thouless vortex state
(Kosterlitz and Thouless, 1973). The other is a more ex-
otic state formed by domain walls between two possible
lattice configurations with three alternating spin
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FIG. 21. Estimated torsional A (solid squares) and rigid-body
Ag (open circles) fluctuations in an assembly of 500-A-long
DNA fragments at C,=3.0X 10'° erg cm, a DNA charge com-
pensation #=0.7, and ¢, corresponding to 30%:70% minor:ma-
jor groove distribution [Eq. (40)] (Lee and Wynveen, 2006).
The break at ~25 A corresponds to the transition from the
ferromagnetic state to the rhombic antiferromagnetic state (at
smaller molecular separations).

orientations'! (Wynveen et al., 2005). Self-consistent ap-
proximations and simulations that treat the positional
and spin degrees of freedom on the same footing re-
vealed evidence for a first-order transition between the
ferromagnetic state and the rhombic antiferromagnetic
state, instead of the second-order transition predicted in
the ground state (Wynveen et al., 2005). Furthermore,
frustration of the molecular orientations leads to a coun-
terintuitive reduction in the crystalline ordering of the
system at large densities so that the system becomes
more liquidlike with increasing density.

Another putative state of liquid crystal order is
hexatic (Toulouse, 1977), which is defined as having
long-ranged bond-orientation ordering but short-ranged
liquidlike positional order. This state has been reported
in experiments with long densely packed DNA
(Podgornik et al., 1996; Strey et al. 2000) and has been
rationalized in terms of frustrated azimuthal interactions
(Strey et al., 2000). Such a state cannot be described by
existing XY models with fixed molecular positions.'*

Finally, a model incorporating nonideality of mol-
ecules in the manner similar to Sec. V.E. (Lee, 2006; Lee
and Wynveen, 2006) allows one to estimate torsional and
azimuthal fluctuations of molecules (Fig. 21). The root-
mean-square amplitudes of these fluctuations (A,,Aq
~0.1-0.4 rad) are consistent with the values based on
x-ray-diffraction patterns of hydrated DNA fibers

UStates akin to this have been seen in other frustrated mag-
netic systems (Lee ef al., 1986).

It is known experimentally that shorter DNA duplexes form
hexagonal columnar rather than hexatic phases. It is thus not
excluded that the apparent line-hexatic phase may be a conse-
quence of entanglement of long DNA. However, similar order
was found for shorter molecules in simulations in which the
positions of the molecules were not fixed for assemblies of
intermediate density (Wynveen et al., 2005).
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(Kornyshev et al., 2005; Sec. VI.D). They are also suffi-
ciently small and consistent with the values estimated
for Gaussian fluctuations near the ground state (Korny-
shev, Leikin, et al, 2002), further supporting the low-
temperature behavior of azimuthal correlations. As ex-
pected based on the latter Gaussian estimates, azimuthal
correlations weaken upon approach to the transition
from the ferromagnetic to the frustrated (rhombic anti-
ferromagnetic) state. However, helix nonideality drasti-
cally reduces this effect so that the correlations remain
strong at all relevant interaxial spacings.

Although intriguing and qualitatively consistent with
some experimental observations [cf., e.g., the observed
structural transitions in assemblies of guanosine columns
(Rudd et al., 2006)], these results are still based on a
crude quasi-2D approximation, as well as popular ap-
proximations of the many-body theory (such as the Har-
tee approximation, etc.). Furthermore, their most inter-
esting predictions refer to fairly dense aggregates (e.g.,
R<25 A for DNA) where the basic expression for the
pair potential may not be justified. Thus, although XY
models might provide some insight into the qualitative
physics of mesophases associated with frustrated azi-
muthal interactions and can be helpful in rationalizing
the cholesteric-to-columnar transition, one should take
their predictions with a grain of salt. A significant, but
challenging, step would be to develop true 3D calcula-
tions which allow for staggered alignments of adjacent
helices.

J. Summary and comments

Aggregates or liquid crystalline phases formed by bio-
logical helices pose challenges for both theory and ex-
periments. Progress has been made in modeling interac-
tion potentials that account not only for the structure of
individual molecules but also for at least some of the
many-body effects of assemblies. But the statistical
physics of such assemblies is still in its infancy. Some of
the experimental observations can be rationalized in
terms of the existing models, providing some confidence
of theories being on the right track. However, few ideas
have been rigorously proven and many experimental ob-
servations still seek explanation.

VII. COUNTERION-INDUCED DNA CONDENSATION

When added to DNA solution, some counterions in-
duce aggregation of DNA double helices. On addition of
these condensing agents, a single (or many) long DNA
molecules will condense primarily into dense toroidal
structures and, to a lesser extent, rodlike particles (Lang,
1973; Eickbush and Moudrianakis, 1976; Lang et al.,
1976; Chattoraj et al., 1978; Marx and Ruben, 1983;
Arscott et al., 1990; Hud et al., 1993; Hud and Vilfan,
2005). Condensation into these structures has been
found to occur for only molecules longer than 400 base
pairs (Widom and Baldwin, 1980). However, at high
DNA concentrations or under osmotic stress, short
DNA fragments, of the order of a persistence length,
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can be condensed into liquid crystalline phases (Robin-
son, 1961; Rill et al., 1983; Rill, 1986; Sikorav et al., 1994;
Livolant and Leforestier, 1996; Pelta, Livolant, and Siko-
rav, 1996; Podgornik et al., 1996; Strey et al., 2000,
Raspaud er al., 2005), as discussed in the previous sec-
tion. While the outside morphology (toroids, spheroids,
rods, fibers, etc.) depends on a variety of factors, for
example, length and concentration of DNA, inside the
aggregates DNA molecules are generally packed into
similar, ordered (usually columnar) arrays. This
counterion-induced condensation of DNA is readily re-
produced in a test tube and yet it is one of the most
fundamental processes crucial for our very existence.
Protamine, a basic polypeptide acting as a DNA coun-
terion, binds and condenses DNA into compact toroidal
subunits in the sperm of most vertebrates, inactivating
and packaging centimeters of DNA in a micron-size
sperm head until it is reactivated after fertilization.

It does not come as a surprise that counterion-induced
DNA condensation is one of the most extensively stud-
ied, most frequently discussed, and best reviewed topics
in the interaction between biological helices (Robinson,
1961; Lang, 1973; Laemmli, 1975; Eickbush and Moudri-
anakis, 1976; Gosule and Schellman, 1976; Lang et al.,
1976; Chattoraj et al., 1978; Wilson and Bloomfield,
1979; Widom and Baldwin, 1980, 1983; Marx and Ruben,
1983; Rill et al., 1983; Rill, 1986; Knoll et al., 1988; Ar-
scott et al., 1990; Strzelecka and Rill, 1990; Bloomfield,
1991, 1996, 1997; Hud et al., 1993, 1995; Ma and Bloom-
field, 1994; Ubbink and Odijk, 1995; Pelta, Livolant, and
Sikorav, 1996; Kassapidou et al., 1998; Raspaud et al.,
1998, 2005; Deng and Bloomfield, 1999; Stevens, 2001;
Burak ef al., 2003; Hud and Vilfan, 2005). Not only is it
relevant for the understanding of how DNA is com-
pacted in sperm heads, viral capsids, and in the cell, but
there is also speculation that the nature of the con-
densed phases of DNA may play an important role in
the function of nucleic acids in biological systems (Kras-
now and Cozzarelli, 1982; Sikorav and Church, 1991;
Sikorav et al., 1994). Nevertheless, it is only in the last
few years that theories and experiments have reached
sufficient sophistication and detail to reveal which of the
many proposed concepts and models actually fit the con-
densation data.

A. Experimental observations

Cations that condense DNA. By commonly referring
to “DNA condensation by multivalent cations” (Bloom-
field, 1997), the biochemical and biophysical literature
on this subject implicitly creates an image of DNA being
condensed by small, pointlike ions with =3+ charge.
Many interpretations have been built on this image, in-
cluding most recently proposed physical theories. But
none of the commonly used DNA-condensing cations
with =3+ charge fit this picture.

Spermine (Sp), spermidine (Spd), protamine, polyl-
ysine, and other polycations that condense DNA in vivo
and in vitro are not pointlike charges and cannot be
even roughly approximated as such. The distance be-



986 Kornyshev et al.: Structure and interactions of biological helices

tween ionic groups in these polymers is at least compa-
rable to and often larger than all pertinent lengths in the
problem, that is Ig, \p, [,, [, and even the radius of
DNA. It would be better to model them as 1+ charges
connected by flexible chains.

Cobalt hexamine (Co-hex, CO[NH3]63+) is the only
commonly used multivalent cation that is not a polymer,
but it is also fairly large. Its diameter (~6 A; Deng and
Bloomfield, 1999) is bigger than [/, and /. and compa-
rable to [z and A\p. Its approximation as a pointlike
charge is marginal, at best.

The only reasonable pointlike cations that condense
B-DNA without significantly affecting its structure (as
confirmed by x-ray diffraction) are divalent Mn>* and
Cd?** (Knoll et al., 1988; Rau and Parsegian, 1992b). In-
terestingly, unlike Sp, Spd, and Co-hex, Mn?>* condenses
DNA much more efficiently at elevated temperatures,
e.g., MnCl, condenses DNA only above 40-45 °C [Fig.
17(a)] (Rau and Parsegian, 1992b). In 150 mM
Mn(ClO,),, DNA is condensed already at 5 °C (Rau
and Parsegian, 1992b), but the strength of the attraction
between DNA molecules still increases with increasing
temperature, as indicated by decreasing interaxial spac-
ing (Rau and Parsegian, 1992b) and measured intermo-
lecular forces (Leikin ef al., 1994). Notably, the alkaline-
earth ions Ca’* and Mg?>* do not cause DNA
condensation at the same conditions (Knoll et al., 1988;
Rau and Parsegian, 1992b; Bloomfield, 1996).

Such remarkable cation specificity is not an exception
but rather a common feature of all counterions used to
condense DNA. For instance, (i) for several polymeric
diamines with different spacers between their two
charged amine groups, few were able to condense DNA
and few were not (Zinchenko et al., 2004). (ii) The po-
tency of spermine homologues, as condensing agents,
with different spacers between two central amines was
found to depend on the spacer length in a nonmonotonic
fashion (Vijayanathan et al., 2001). (iii) DNA condensa-
tion by Co-hex, tris(ethylenediamine) cobalt (Co-en),
and cobalt sepulchrate (Co-sep) was studied by Deng
and Bloomfield (1999). All three cations are cobalt-
amines and all of them have 3+ charge, but a much
lower concentration of Co-sep** was needed to con-
dense DNA. Furthermore, one of the two stereoisomers
of Co-en** was selectively bound in DNA aggregates,
suggesting that it is a stronger condensing agent than the
other isomer.

Physics or chemistry? At the same time, a similar ex-
tent of DNA charge neutralization was found at the on-
set of condensation (~80-90% ) (Wilson and Bloom-
field, 1979; Widom and Baldwin, 1983; Matulis et al.,
2000; Burak et al., 2003; Baigl and Yoshikawa, 2005). At
the scale of several nearest neighbors, similar hexagonal
packing of condensed B-DNA was observed in toroids
and other forms of aggregates induced by different
counterions (Schellman and Parthasarathy, 1984; Hud,
1995; Livolant and Leforestier, 1996). Molecules were
found to be packed at the same spacing of about R
~30+3 A (Hud and Downing, 2001; Raspaud et al.,
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2005) and similar forces were measured upon osmotic
compression of aggregates induced by different counte-
rions (Rau and Parsegian, 1992b).

These similarities suggest that it should be possible to
think about DNA condensation in terms of the common
physical forces organizing molecules. Partly motivated
by this problem, significant progress has been made in
recent years in theories of counterion-induced electro-
static attraction between like charged rods. A variety of
different models, all predicting such attraction, have
been developed (Sec. V.C). The challenge now is to rec-
oncile the predictions of these models with the data, for
example, to understand why some counterions condense
DNA better than others. The pertinent chemistry of
counterions is likely to be simple, for example, counte-
rions having different binding constants and/or sites on
DNA. But it cannot be ignored. Both the physics and
chemistry of the system appear to be important.

The problem of resolubilization of DNA aggregates
(Pelta, Durand, et al., 1996; Pelta, Livolant, and Sikorayv,
1996; Raspaud et al., 1998, 1999; Saminathan et al., 1999)
is an excellent illustration of the latter point. Reversal of
DNA charge from negative to positive may be invoked
to explain the resolubilization of DNA aggregates ob-
served at high concentrations of Sp and Spd (Shklovskii,
1999b; Nguyen et al., 2000a, 2000b, 2000c). One might
expect sufficiently strong binding to cause adsorption of
more multiply charged counterions than what is needed
to neutralize the charge of DNA, thereby resulting in
effective charge reversal. Certain theories have sug-
gested that for highly charged surfaces and multivalent
point charges (strong coupling, E>1) such charge rever-
sal would not even require chemical adsorption (Shk-
lovskii, 1999b; Nguyen et al., 2000b, 2000c). However,
there may be important chemical aspects missing in such
descriptions when applied to real systems that, in turn,
could have important consequences for the physics of
these systems. Also, Sp and Spd cannot be considered as
single point charges. Furthermore, at the concentrations
(=100 mM) required for DNA resolubilization they
might not even be fully dissociated. This means that
SpdCl; solution might contain not only Spd** and CI-
ions, but also SpdCI** and potentially even SpdClL,*. Spd
that may not be completely dissociated would then com-
pete for binding to DNA and displace the fully dissoci-
ated Spd, potentially reducing the extent of charge neu-
tralization at high Spd concentration. This hypothesis
was tested by detailed measurements of the structure of
DNA aggregates condensed with different Spd salts
(with different dissociation constants) and by competi-
tive binding studies (Yang and Rau, 2005). The results
seem to suggest that incomplete dissociation of Spd salts
does occur at these concentrations. A possible interpre-
tation would be that it is underneutralization (due to
preferential binding of the partially dissociated species)
rather than charge reversal that underlies the weakened
attraction between DNA molecules at high Spd concen-
tration (Yang and Rau, 2005).
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B. Counterion-correlation models

Most models describe DNA condensation in terms of
electrostatic forces in the context of pair interactions,
which were discussed in Sec. V. Before proceeding with
comparisons of these models with experimental data,
however, we note two other hypotheses. Attractive hy-
dration forces due to water structuring by phosphates
and counterions have been discussed by Leikin et al.
(1991, 1993) and Rau and Parsegian (1992a). But, for
highly charged DNA, they are difficult to distinguish
(both conceptually and quantitatively), for example,
from corrections associated with the nonmacroscopic di-
electric response of water (Sec. V.A). Bridging of DNA,
for example, by spermine or spermidine molecules span-
ning across the water gap between DNA molecules has
been proposed (Allison et al, 1981; Schellman and
Parthasarathy, 1984; Raspaud, et al., 1998, 1999; Bloom-
field et al, 2000). Such bridging might contribute to
DNA condensation by long polyamines, but it cannot
explain, for example the Mn?* and Cd** data. Thus it is
not likely to be a universal mechanism for DNA conden-
sation (Rau and Parsegian, 1992a).

In all electrostatic models, the attraction responsible
for DNA condensation is between negatively charged
phosphates on one molecule and positively charged
counterions condensed onto the other molecule.
Counterion-correlation models approximate DNA as a
homogeneously charged rod and condensed counterions
as pointlike charges. Juxtaposition of positive and nega-
tive charges occurs due to alignment of cations on one
rod opposite to “correlation holes” (spaces between cat-
ions) on the opposing rod (Oosawa, 1971, Marquet and
Houssier, 1991). The correlations between positions of
condensed counterions are generally liquidlike (Aren-
zon et al., 1999; Ha and Liu, 1999a, 1999b; Levin et al.,
1999; Sec. V.C). It has been argued, however, that =3+
charges might begin organizing themselves into a quasi-
crystalline lattice (Rouzina and Bloomfield, 1996), akin
to the Wigner crystal (Shklovskii, 1999a, 1999b; Gros-
berg et al, 2002). Computer simulations of rods with
DNA surface charge density in a continuum dielectric
with £ =80 found no evidence of crystallinelike organiza-
tion of trivalent point charges on rods (Deserno and
Holm, 2002). But the effective & within the layer of con-
densed counterions might be much smaller than 80, in-
creasing the effective coupling parameter =xg~2 by up
to two orders of magnitude. If that were the case, the
coupling might become strong enough for formation of
large quasicrystalline domains by 3+ point charges. Be-
cause of the quasi-1D nature of the DNA cylindrical
geometry, this may not be guaranteed due to thermal
fluctuations (Sec. V.C).

Regardless of whether such crystalline domains form
or not, the Wigner-crystal model provides the best way
to obtain an accurate upper estimate for the attractive
interaction energy due to counterion-correlation forces.
Indeed, this model corresponds to the formal low-
temperature limit for counterion-correlation forces,
which become stronger with decreasing temperature due
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FIG. 22. Comparison of attractive interaction energies per
base pair in a hexagonal aggregate calculated within different
models at complete charge compensation (#=1, no image
charge repulsion). (1) (Long dashed) Wigner crystal model
[Egs. (52)—(54)] with 2+ counterions (calculated as described in
Sec. V.C.2, but with the complete set of harmonics). (2) (Short
dashed) Wigner-crystal model with 3+ counterions. (3) (Solid
line) Electrostatic zipper model [calculated from Egs. (57) and
(59)] at 30:70 minor:major groove ratio of condensed:bound
counterions; Z%:O.S and {,’%:3.3, Eq. (40). Inset: The same re-
sults on a logarithmic scale, demonstrating the slower decay of
the energy within the electrostatic zipper model.

to the increasing strength of counterion correlations
(Levin et al., 1999). In the Wigner-crystal model the at-
tractive interaction energy between rods can be calcu-
lated exactly at any interaxial distance as described in
Sec. V.C. The results of such a calculation (Fig. 22) show
that the attraction becomes strong enough to contribute
to the observed DNA condensation only when the
charge of the pointlike cations is 3+ or larger (Rouzina
and Bloomfield, 1996).

Thus counterion-correlation forces, on their own, are
likely not strong enough to explain DNA condensation
by Mn?* and Cd**. Furthermore, selectivity (condensa-
tion by Mn?* and Cd?* but not by Mg?* or Ca’*) and
temperature-favored DNA condensation by these diva-
lent ions are inconsistent with the counterion-
correlation model as well. For spermine, spermidine,
and other cationic polymers, these forces should be even
weaker. With regard to counterion-correlation forces,
such molecules, which are essentially flexible chains of
monovalent ions, are expected to behave more like
monovalent rather than multivalent ions, since they are
longer than the surface separation and the average dis-
tance between fixed charges.

In other words, counterion-correlation forces are
likely to be a factor only in DNA condensation by cobalt
amines. But, even in this case, they are not likely to be
the only or the dominant condensation mechanism. For
homogeneously charged rods the larger and more hy-
drophobic Co-sep®* ion would be expected to have a
lower binding constant, in comparison to Co-hex’.
Therefore one would predict a higher concentration nec-
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essary for the onset of DNA condensation. The experi-
mental observations are exactly opposite. The preferen-
tial condensation by one of the Co-en** stereoisomers is
equally difficult to explain within this mechanism. It
comes into conflict with the basic idea of ion correlations
based on the ability of condensed counterions to move
freely along the DNA surface. Instead, such stereoiso-
mer specificity suggests the importance of preferential
binding at some specific sites, which can be described
only if one incorporates the DNA structure into the
theory.

C. Electrostatic zipper model

Because they are based on the homogeneously
charged rod approximation, counterion-correlation
models inherently account only for positional correla-
tions of condensed counterions with each other. The
theory of interactions between inhomogeneously
charged rods (Kornyshev and Leikin, 1997, 1999) ac-
counts for all correlations: counterion-counterion,
phosphate-phosphate, and phosphate-counterion (Sec.
V). The latter manifests itself in excess positive charge in
DNA grooves and excess negative charge on phosphate
strands, allowing for an attractive zipperlike juxtaposi-
tion of the strands and grooves (Sec. V.D, Fig. 7)
(Kornyshev and Leikin, 1999). The strength of this at-
traction is determined by the extent of DNA charge
neutralization 6 and by the two dimensionless, weighted
helical moments ¢; and ¢, of the distribution of fixed
charges and condensed counterions. Complete expres-
sions relating ¢; and ¢, to the density profiles of fixed
charges and condensed counterions are given in the
EPAPS Document in the Reference Section.

This electrostatic zipper model predicts the onset of
DNA condensation at 8= 6,~0.8-0.9 (Fig. 23), similar to
most other models. Unlike other models, it predicts a
significant dependence of the condensation onset on the
charge asymmetry of the major and minor grooves (Fig.
7). A simple heuristic model of counterion adsorption
relating the values of ¢; and ¢, used in Figs. 22 and 23 to
fractions of counterions adsorbed at different locations
on DNA surface is described in Sec. IV.D, Eq. (40). In
general, larger partitioning of counterions into the major
grove increases ﬁ and so favors the condensation (Sec.
V.D).

Rigorous quantitative analysis of the zipper model
would require a self-consistent calculation of 6, {;, and
{, at all values of R. However, to first approximation one
can assume 6, {;, and ¢, to be independent of R at sur-
face separations larger than Ap (Kornyshev and Leikin,
1997), which covers the observed range of equilibrium R
in DNA condensates. Detailed comparison of the pre-
dictions of the zipper model within this approximation
with other models and experimental observations
(Kornyshev and Leikin, 1999; Cherstvy et al., 2002, 2004)
reveals the following.

Condensation energy. At R=30+3 A (the observed
spacing in DNA condensates), the electrostatic zipper
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FIG. 23. Aggregation energy (per base pair) for a hexagonal
aggregate of long flexible DNA as a function of charge com-
pensation fraction 6, calculated for the electrostatic zipper
mechanism from Egs. (58) and (59) (parallel nonideal helical
pairs from Sec. V.E) and Egs. (97)—(99) (aggregates of parallel
molecules from Sec. VI) at \,=300 A, C,=3x10"" ergcm.
The values of {; and {, were selected to match the counterion
adsorption model [Eq. (40)] with 50:50 (long dashed), 30:70
(solid curve), and 20:80 (dotted curve) minor:major groove ra-
tios of condensed counterions.

attraction is much stronger than that for counterion-
correlation forces for 1+ and 2+ point charges and some-
what stronger or comparable to the correlation forces
for 3+ point charges (Fig. 22). Note that the real energy
of counterion-correlation interactions should be much
smaller than its upper estimate at 7=0 shown in Fig. 22
(particularly for 1+ and 2+ charges). In other words, the
electrostatic zipper attraction is likely to be the domi-
nant or at least a major condensation force even for 3+
point charges. The corresponding condensation energy
predicted for the electrostatic zipper mechanism is in
agreement with measured values, ~(0.1-0.2)kzT/bp
(Rau and Parsegian, 1992a, 1992b; Raspaud et al., 2005)
(Fig. 23).

Counterion specificity. The electrostatic zipper mecha-
nism of DNA condensation requires only the following.
(i) A sufficient fraction of the DNA charge should be
neutralized. Hence the condensation is not induced by
monovalent metal ions. (ii) A sufficient fraction of con-
densed counterions should be located in the major
groove. Hence the condensation is not induced by Mg+
and Ca”* which have very high affinity for phosphates
and preferentially adsorb onto phosphate strands and/or
the minor groove (Grzeskowiak et al., 1998; Minasov et
al., 1999; Tereshko et al., 1999; Egli, 2002).

This mechanism does not require a high valence of
component charges on polyions. It suggests that the con-
densation of DNA by Mn?*, Cd**, Co-amines, Sp, Spd,
and some polymeric diamines might be the result of
their strong binding to DNA and their known prefer-
ence for binding in the major groove (Sec. IV.C; Deng
and Bloomfield, 1999). The higher potency of Co-sep>*
vs Co-en’* and Co-hex’*, the difference between stere-
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oisomers of Co-en®*, and the differences between
polyamines with spacers of different length could be
caused by differences in their binding constants to DNA
overall and/or to specific sites in the DNA major groove.
Presently, we do not know whether this is really the case,
but this hypothesis can certainly be experimentally
tested.

Temperature dependence. As DNA condensing agents,
Mn?* and Cd?* have two peculiar properties that distin-
guish them from other divalent counterions. First, they
decrease the thermal stability of DNA, while the other
ions increase it (Daune, 1974; Duguid et al., 1995).
Closer to the melting point one would expect stronger
relative changes in the torsional rigidity of DNA with
temperature. Rapid softening of the helix might result in
temperature-induced condensation by allowing better
torsional adaptation and stronger attraction (Sec. V.E).
Second, both of these ions can bind in the minor and
major grooves (Clement et al., 1973; van Steenwinkel et
al., 1981; Granot and Kearns, 1982; Saenger, 1984; Dug-
uid et al., 1993; Froystein et al., 1993; Moldrheim et al.,
1998; Davey and Richmond, 2002). A shift from the mi-
nor into the major groove upon DNA condensation (ex-
pected from the electrostatic zipper mechanism) could
also contribute to the observed temperature effect
(Cherstvy et al., 2002). Both of these effects are hypo-
thetical. But, they are consistent with what we know
and, again, they are experimentally verifiable.

DNA structure and sequence.13 Finally, the higher con-
tent of GC base pairs does promote DNA condensation
by Mn?* and Co-hex, potentially because it provides the
N7 atoms of guanine needed for more efficient binding
of these ions in the major groove. It was also reported
that Ni** converts poly(dG-dC) from the B into the Z
form followed by condensation, but it does not effi-
ciently condense poly(dA-dT) (Sitko et al., 2003). Analy-
sis of the structural differences in these two forms of
DNA within the electrostatic zipper model revealed a
much higher propensity of Z-DNA for aggregation
(Sitko et al, 2003). Interestingly, of all the common
forms of DNA (A, B, C, and Z), the ratio of the groove
widths for the B form makes it the most resistant to
nonspecific aggregation by counterions. Does its higher
solubility play a part in nature’s design?

BAn interesting study of single-molecule DNA condensation
was recently reported by Besteman et al. (2007). They ob-
served a variation in the condensation force upon winding 8
kbp DNA by magnetic tweezers from —20 to +40 turns, but no
further change in the force from —-20 up to ~-1000 turns. It
would be worthwhile, however, to exercise caution in inter-
preting the latter observation without knowing the condensed
DNA structure. DNA unwinding may disrupt the double helix
and cause hairpins and other alternative structures, which will
form even more readily under tension and may occur already
at —20 turns. The further increase in the number of negative
turns may simply change the fraction of alternate DNA struc-
tures coexisting with the double helix. The constant condensa-
tion force within such a “two-phase” region would be niether
surprising nor revealing.
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D. Summary and comments

DNA condensation is, in many ways, a paradigm for
interactions between biological helices and a testing
ground for the corresponding theories. To fully under-
stand this phenomenon, it is essential to account for all
relevant details and observations. As we argued, biologi-
cal DNA counterions are not and cannot be modeled as
multivalent pointlike charges. They are polyions, which
usually bind to DNA in a stretched conformation by
fitting into one of the grooves. Even the charge of these
ions cannot be strictly defined, because under certain
conditions their amine groups may not retain the extra
proton which provides the expected charge. We also
cannot discard the fact that two stereoisomers of the
same ion have entirely different effects on DNA con-
densation. Only by paying attention to these details of
the underlying structure and chemistry can we hope to
arrive at a real understanding of biological macromol-
ecules and their interactions.

VIII. CONCLUSIONS AND OUTLOOK

The study of interactions between biological macro-
molecules is a fascinating subject at the crossroads of
physics, chemistry, and biology. In this review we fo-
cused on one aspect of this problem—the physics relat-
ing microscopic structure of helical macromolecules to
macroscopic properties of various objects they compose.
We argued that the foundation for understanding this
physics was laid by a simple theory of structure factors
for helical chains of atoms, derived by Cochran, Crick,
and Vand (1952). In less than a year these structure fac-
tors were used by Watson and Crick for their remark-
able discovery of the structure of the DNA double helix.
However, more than half a century later, we are just
beginning to understand that the same structure factors
determine not only the diffraction pattern from the
double helix but also important features of interactions
between DNA molecules. For instance, as discussed in
Sec. VI.D, the same classical x-ray-diffraction patterns
that were used to solve the DNA structure appear to
contain information about azimuthal correlations and
interaction-induced torsional deformation of the double
helix in liquid crystalline aggregates.

In fairness, not everyone shares the view that the he-
lical structure is important for intermolecular forces and
that it determines at least some macroscopic properties
of various assemblies of biological helices. Many alter-
native models of various phenomena have been pro-
posed. Our goal here was to analyze these models on the
same footing and compare them with all available ex-
perimental data rather than a few selected measure-
ments that fit the best. To be sure, there are still more
questions than answers, but we believe that this rapidly
developing field is ripe for new major advances. It is
difficult to predict where such advances might come.
Nevertheless, in our opinion, some of the most impor-
tant and interesting unresolved problems are as follows.

The nature of measured forces. Very similar, short-
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range, exponential forces have been measured between
DNA, polysaccharides, collagen, and guanosine helices
within the last 1-2 nm of surface-to-surface separation.
These forces do not appear to conform to the traditional
theory of interaction between uniformly charged cylin-
ders in electrolyte solution. The deviations have been
attributed, for example, to (i) hydration (Sec. V.I), (ii)
correlations and fluctuations in the density of counteri-
ons condensed or adsorbed on molecular surfaces (Sec.
V.C), and (iii) corrections to electrostatic interaction as-
sociated with helical patterns of fixed charges and con-
densed counterions (Sec. V.D). The corresponding mod-
els are not mutually exclusive, that is, all of these effects
can contribute. Our analysis of the experiments (Sec.
VLF) suggests that the effects of the helical structure on
electrostatic interactions provide the most consistent ex-
planation for many nontrivial observations. There is still
no direct proof of such an interpretation. Accurate
quantitative comparisons of the corresponding theoreti-
cal predictions with measurements are hindered by in-
herent problems of mesoscopic electrostatics, i.e., insuf-
ficient knowledge of the dielectric response of water and
counterion distribution in thin water layers at molecular
surfaces. Potentially, all-atom computer simulations
could help to resolve these issues, but they also suffer
from model uncertainties. Furthermore, such simula-
tions of multimolecular, liquid crystalline assemblies of
helices are far beyond the capabilities of present com-
puter systems. The best hope therefore lies in formula-
tion of targeted experiments, which could test qualita-
tive differences in the predictions of different models.
Mechanism of counterion-induced DNA condensation.
A distinct set of predictions for structure-dependent
electrostatic interactions between DNA has been formu-
lated within the electrostatic zipper model. In particular,
this model predicts that counterion adsorption in the
major groove of DNA will promote a zipperlike align-
ment between the negatively charged strands and posi-
tively charged grooves on opposing helices (Fig. 7), re-
sulting in intermolecular attraction and aggregation. In
the aggregate, intermolecular separation is determined
by the balance between the attraction and a shorter-
range image repulsion of fixed and adsorbed charges
from the dielectric cores of neighboring molecules.
Compaction (condensation) of DNA into densely
packed aggregates by counterions is a very important
biological phenomenon, and it has been extensively
studied experimentally in vivo and in vitro. In Sec. VII
we argued that nontrivial qualitative features of DNA
condensation observed in vitro are more consistent with
the zipper model than with counterion-correlation ef-
fects. These features include, for example, counterion
specificity (which correlates with the known preferential
counterion adsorption in the major groove), dependence
on the base-pair composition of DNA (modulating the
major groove adsorption), and the dependence on DNA
structure (the higher solubility of B-DNA compared to
other forms of DNA). Moreover, the decay lengths of
the longer-range attraction and the shorter-range repul-
sion predicted within the electrostatic zipper model were
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found to be the same as those measured in counterion-
condensed DNA aggregates with less than a 5-10 % dif-
ference (Sec. VL.F). Such evidence suggesting the impor-
tance of DNA structure in counterion-induced
aggregation speaks for itself. But it does not exclude
hydration forces (Sec. V.I), as an addition rather than an
alternative to electrostatic interactions. It is difficult to
discriminate between the two contributions, as qualita-
tively they must give similar effects. Distinguishing elec-
trostatics from hydration is still an open challenge.

Physics of chiral interactions and chiral assemblies.
The role of the helical structure in chiral interactions is
unquestionable. A uniformly charged cylinder is not chi-
ral. Significant progress has been made recently in theo-
retical modeling of chiral pair interaction potentials be-
tween helical macromolecules (Secs. V.G and VL.E). Our
understanding of such interactions in supercoiled struc-
tures and in multimolecular aggregates is still far from
being complete (Secs. V.H and VLE). These interactions
depend strongly on azimuthal correlations between
neighboring molecules. Estimates and experimental evi-
dence suggest, for example, that the azimuthal correla-
tions between DNA molecules in the chiral, cholesteric
phase may be strong enough that various high-
temperature approximations developed over the years
may not be appropriate. To the best of our knowledge,
no low-temperature statistical theory that would prop-
erly account for such correlations in a liquid crystalline
cholesteric array has been proposed yet. A variety of
experimental observations, such as the dependence of
the cholesteric pitch on the aggregate density, the tran-
sition between the cholesteric and hexagonal (line
hexatic) phase, and so on, have only hypothetical expla-
nations.

Biology inspired by physics. The simple theory of Co-
chran, Crick, and Vand (1952) triggered a true revolu-
tion in biology and medicine. The potential impact of its
new applications to understanding helix-helix interac-
tions is difficult to predict today. We do not know yet
whether the predicted sequence homology recognition
through electrostatic interactions between double heli-
ces plays any role in pairing of homologous DNA frag-
ments preceding genetic recombination (Sec. V.F), but
the speculation is intriguing and well worth pursuing.
The importance of electrostatic interactions between
a-helix backbones are in the formation of a-helix coiled
coils and protein folding, in general is not clear. Are
there any other potentially important applications of
these ideas to biology? Rapid advances in this field sug-
gest that this question may well be answered soon.
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